
IN-PLACE UPDATES IN TREE-ENCODED BITMAPS

Marcellus Prama Saputra, Eleni Tzirita Zacharatou, Serafeim Papadias, Volker Markl 



Dezentrales Logo
optional

Agenda

• Tree-Encoded Bitmaps
• Idea
• Construction
• Differential Updates

• Solution Approach
• Run-Forming Updates
• Run-Breaking Updates
• Hybrid Updates

• Experimental Results
• Conclusion

2



Dezentrales Logo
optional

Tree-Encoded Bitmaps

• Bitmap index compression scheme.
• Represent bitmaps as binary trees.

• Leaf nodes represent runs.
• A label is assigned to every leaf node to indicate type of run.
• Length of run is indicated by distance between leaf node and root.

3



Dezentrales Logo
optional

Tree-Encoded Bitmaps: Construction

1. Construct perfect binary tree on top of original bitmap.
2. Prune sibling nodes that have the same label bottom up.

4



Dezentrales Logo
optional

Tree-Encoded Bitmaps: Encoding

• After pruning, the binary tree is encoded into 2 bitmaps, T and L.
• The binary tree is traversed left to right in level order, and bits are appended to T 

and L during the traversal.
• T represents the structure of the tree and L contains the labels of every leaf node.
• 0 is appended to T when encountering a leaf node, 1 otherwise.

5



Dezentrales Logo
optional

Tree-Encoded Bitmaps: Encoding

• After pruning, the binary tree is encoded into 2 bitmaps, T and L.
• The binary tree is traversed left to right in level order, and bits are appended to T 

and L during the traversal.
• T represents the structure of the tree and L contains the labels of every leaf node.
• 0 is appended to T when encountering a leaf node, 1 otherwise.

T=1100100
L=0101

6



Dezentrales Logo
optional

Tree-Encoded Bitmaps: Differential Updates

Store updates in a differential data structure.

After a number of updates have been stored, the differential data structure can 
be merged with the TEB by decompressing and reconstructing the TEB.

7



Dezentrales Logo
optional8

Tree-Encoded Bitmaps: Differential Updates

Drawbacks:

• Increased space overhead from maintaining an auxiliary data structure.
• Increased read latency as reads must consult the differential data structure as well.



Dezentrales Logo
optional9

Tree-Encoded Bitmaps: Differential Updates

Drawbacks:

• Increased space overhead from maintaining an auxiliary data structure.
• Increased read latency as reads must consult the differential data structure as well.

Objective: Reduce space overhead and read overhead.



Dezentrales Logo
optional10

In-Place Updates

• Directly modifying T and L instead of storing updates.
• Implementation challenges:

• Static nature of TEBs.
• Lack of tools to modify TEBs.
• Numerous metadata to maintain.



Dezentrales Logo
optional11

In-Place Updates: Approach

1. Perform point lookup to find leaf node responsible for updated position.
2. Determine type of update depending on the leaf node from point lookup:

– A run-forming update if the leaf node resides at the lowest possible tree level.
– A run-breaking update otherwise.

3. Handle the update accordingly.



Dezentrales Logo
optional

Run-Forming Updates

• At the lowest possible level of the tree, every leaf node represents an individual bit.
• As a result, performing the update only requires changing the label of one leaf node.
• After the update, a new run may be formed.

12

L=0101 L=0111



Dezentrales Logo
optional

Run-Breaking Updates

• Leaf nodes at upper levels represent runs.
• To apply the update, the leaf node responsible for the updated position is replaced 

with a subtree.
• This is done by inserting new nodes into the tree, i.e., by inserting bits into T and L.

13

T=1100100
L=0101

T=11101100000
L= 100101



Dezentrales Logo
optional

Run-Breaking Updates

• Problems:
• Inserting bits into T and L is expensive.
• Cannot guarantee extra space required for new bits.

14

T=1100100
L=0101

T=11101100000
L= 100101



Dezentrales Logo
optional

Hybrid Updates

• Run-forming updates are much faster than differential updates.
• Therefore, we devised a hybrid approach:

• Perform run-forming updates in place.
• Store run-breaking updates in a differential data structure.

15



Dezentrales Logo
optional

Hybrid Updates: Remarks

• “Best of both worlds” approach; combining in-place updates and 
differential updates.

• In worst case performs as fast as differential updates, i.e., every update 
is a differential update.

• Degree of speedup is determined by proportion of run-forming updates 
in the workload.

• Reduced space overhead from differential data structure as fewer 
updates are stored.

• With fewer updates stored, there is less merging in the long run.
• Read latency is the same as with differential updates.

16



Dezentrales Logo
optional

Experimental Results: Run-Forming Update Performance

In-place run-forming updates are 3 times faster than differential updates.
As the differential data structure grows, differential updates perform progressively worse.

17

Setup:
• Roaring as differential data 

structure
• 1 million bits long bitmaps
• Randomly generated 

bitmaps and updates



Dezentrales Logo
optional

Experimental Results: Hybrid Update Performance

Hybrid updates 15% faster than differential updates when 7% of all updates are run forming,
~60% faster than differential updates when 20% of all updates are run forming.

18

Setup:
• Roaring as differential data 

structure
• 1 million bits long bitmaps
• Same bitmap and update 

generation as in the original paper



Dezentrales Logo
optional19

Conclusion

• Two types of in-place updates:
• Run-forming updates: change label of target leaf node.
• Run-breaking updates: expand target leaf node into a subtree.

• Hybrid Approach:
• Perform run-forming updates in-place, store run-breaking updates.
• At least as fast as differential updates.
• Improvement over differential updates increases with more 

run-forming updates.



Dezentrales Logo
optional20

References
1. Harald Lang, Alexander Beischl, Viktor Leis, Peter Boncz, Thomas Neumann, and Alfons Kemper. 

2020. Tree-Encoded Bitmaps. In Proceedings of the 2020 ACM SIGMOD International 

Conference on Management of Data (SIGMOD '20). Association for Computing Machinery, New 

York, NY, USA, 937–967. https://doi.org/10.1145/3318464.3380588




