
Efficient Query Processing
for Spatial and Temporal Data Exploration

Eleni Tzirita Zacharatou
Advisor: Anastasia Ailamaki

Public Thesis Defense
09.08.2019

Urbanization and City Planning

2

Data Exhaust from Cities
Infrastructure Environment People

3

Understanding Cities through Data

4Opportunity: Data-driven urban planning

Visual Spatial Data Exploration

5

Distribution of taxi pickups per
neighborhood in Manhattan

Comparison of different urban datasets

Reported crimes Noise complaints Restaurants Taxi pickups

Need: Interactive response times

Spatial Aggregation Queries

6

SELECT COUNT(*)

FROM taxi ride T, neighborhoods N

WHERE T.pickup INSIDE N.geometry

AND T.picktime in January 2009

GROUP BY N.id

Expensive Point-in-Polygon tests → High latency (minutes)

Point-in-Polygon tests

Spatial Join

Aggregation

Input

Selection

Grouping

Spatial Aggregation: a Geometric Perspective

7
→ Leverage the graphics pipeline of the GPU

“Drawing” on the same canvas

Input points Input polygon Spatial join

Raster Join - Step 1: Draw the Points

8

Raster Join - Step 1: Draw the Points

9

1

Raster Join - Step 1: Draw the Points

10

1

Raster Join - Step 1: Draw the Points

11

1
1

Raster Join - Step 1: Draw the Points

12

1
1

Raster Join - Step 1: Draw the Points

13

2
1

Raster Join - Step 1: Draw the Points

14

2
1

1
1

2

1
1 1

1
1 1

1

1

1
1

1
1 1

1
1

11 1
1

12
1

1
1

Raster Join - Step 2: Draw the Polygons

15

2
1

1
1

2

1
1 1

1
1 1

1

1

1
1

1
1 1

1
1

11 1
1

12
1

1
1

0

Raster Join - Step 2: Draw the Polygons

16

2
1

1
1

2

1
1 1

1
1 1

1

1

1
1

1
1 1

1
1

11 1
1

12
1

1
1

2

Raster Join - Step 2: Draw the Polygons

17

2
1

1
1

2

1
1 1

1
1 1

1

1

1
1

1
1 1

1
1

11 1
1

12
1

1
1

2

Raster Join - Step 2: Draw the Polygons

18

2
11

1
1

2

1
1

1
1 1

1

1

1
1

1
1 1

1
1

11 1
1

12
1

1
1

3

Raster Join - Step 2: Draw the Polygons

19

15
1
1 1 1

2

1 1
1

1
2
1 1

1
1 1

1
1 1

1

1 1

1 1

1

1
1

1

2

1

1

No Point-in-Polygon tests
Combines the aggregation with the join operation

Uses native support for drawing in GPUs

Bounding the Approximation Error

20

1
1 1 1

2

1 1
1

1
2
1 1

1
1 1

1
1 1

1

1 1

1 1

1

1
1

1

2

1

1

H(Pa , P) ≤ ε

Trade accuracy for response time

• Bound the Hausdorff
distance between the
approximate (purple)
and the original
polygon.

• Smaller pixel size →
higher accuracy.

Hybrid Raster Join: an Accurate Technique

Blue pixels - completely inside the polygon: store count
Grey pixels - polygon boundary: Point-in-Polygon (PiP) tests

21Extra computation: identifying the boundary & performing PiP tests

Bounded Raster Join
(Approximate, ε-bound = 10 meters)

Scaling with Increasing Data Sizes

22

Hybrid Raster Join
(Accurate)
GPU Baseline
(Accurate)

COUNT Taxi rides (points) GROUP BY NYC Neighborhoods (260 polygons)

[Intel Core i7 Quad-Core CPU @ 2.80GHz, 16GB RAM, NVIDIA GTX 1060 GPU, 6GB memory (using only 3GB)]

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Memory Processing

CPU-GPU data transfer takes a significant amount of time
Bounded Raster Join is 4X faster than GPU Baseline

[Max resolution: 8192, Grid index: 10242 cells]

• Express queries as graphics
primitives and use modern GPUs

• Aggregating 850M taxi records over
NYC neighborhoods in ~1 second

23

GPU Rasterization enables Interactive Spatial Queries
[VLDB18, SIGMOD18]

24

Clipped Minimum Bounding Boxes for Efficient Spatial Indexing

Clipped Bounding Box

[ICDE18]

Minimum Bounding Box

Improve precision by subtracting out empty bounded areas
è Answering a spatial range query on 1B objects in less than 200ms

Empty space è
Ineffective filtering

Category-aware spatial data organization
è Up to 12.3X faster queries on 10 different neuron categories

25

Workload-Aware Indexing enables Ad-hoc Spatial Queries

Index per category Distinct group per category

Category-oblivious partitioning

Index over union

[ExploreDB16]

26

0 0 0 0

0 0 1 0

1 1 1 1

1 1 1 1

0 0 0 0

0 1 0 0

1 1 1 1

1 1 1 1

0 0 0 0

0 0 1 0

1 1 1 1

1 1 1 1
0 0 0 0

0 1 0 0

1 1 1 1

1 1 1 1

0 0 0 0

0 0 1 0

1 1 1 1

1 1 1 1

0 0 0 0

0 1 0 0

1 1 1 1

1 1 1 1

Quadtree Bitmap Decomposition for Scalable Time Series Indexing
[SSDBM15]Value-time searches exploiting space-time similarity

è From 9X to 23X faster queries on neuroscience data

Bitmap
encoding

Bitmap grouping
Exploit inter-similarities

Quadtree decomposition
Exploit intra-similarities

Thesis Statement
Modern applications need to explore large amounts of spatial
and temporal data at interactive speeds, challenging
traditional query processing techniques that rely on time-
consuming computations and inefficient access methods.

Query operators that exploit specialized hardware and
workload-aware access methods enable scalable and
interactive exploration of spatial and temporal data.

27

Looking Ahead

• Approximation-based spatial data processing
– Fine-grained approximations and omission of exact geometric tests
– Distance-based error bound
– Trade precision / storage space for performance

• Utility of graphics techniques for spatial data processing
– GPU rasterization for real-time approximation
– 3D Join è Collision Detection

28

Thank you!

