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Urbanization and City Planning
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Data Exhaust from Cities
Infrastructure                           Environment                                   People
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Understanding Cities through Data

4Opportunity: Data-driven urban planning 



Visual Spatial Data Exploration
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Distribution of taxi pickups per 
neighborhood in Manhattan

Comparison of different urban datasets

Reported crimes Noise complaints Restaurants Taxi pickups

Need: Interactive response times 



Spatial Aggregation Queries
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SELECT COUNT(*)

FROM taxi ride T, neighborhoods N

WHERE T.pickup INSIDE N.geometry

AND T.picktime in January 2009

GROUP BY N.id

Expensive Point-in-Polygon tests → High latency (minutes)

Point-in-Polygon tests

Spatial Join

Aggregation

Input

Selection

Grouping



Spatial Aggregation: a Geometric Perspective
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→ Leverage the graphics pipeline of the GPU

“Drawing” on the same canvas

Input points Input polygon Spatial join



Raster Join - Step 1: Draw the Points
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Raster Join - Step 1: Draw the Points
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Raster Join - Step 1: Draw the Points
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Raster Join - Step 1: Draw the Points
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Raster Join - Step 1: Draw the Points
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Raster Join - Step 1: Draw the Points
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Raster Join - Step 1: Draw the Points
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Raster Join - Step 2: Draw the Polygons
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Raster Join - Step 2: Draw the Polygons
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Raster Join - Step 2: Draw the Polygons
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Raster Join - Step 2: Draw the Polygons
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Raster Join - Step 2: Draw the Polygons
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No Point-in-Polygon tests
Combines the aggregation with the join operation

Uses native support for drawing in GPUs



Bounding the Approximation Error
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H(Pa , P) ≤ ε

Trade accuracy for response time

• Bound the Hausdorff
distance between the 
approximate (purple) 
and the original 
polygon.

• Smaller pixel size → 
higher accuracy.  



Hybrid Raster Join: an Accurate Technique

Blue pixels - completely inside the polygon: store count 
Grey pixels - polygon boundary: Point-in-Polygon (PiP) tests

21Extra computation: identifying the boundary & performing PiP tests



Bounded Raster Join 
(Approximate, ε-bound = 10 meters) 

Scaling with Increasing Data Sizes
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Hybrid Raster Join
(Accurate)
GPU Baseline
(Accurate) 

COUNT Taxi rides (points) GROUP BY NYC Neighborhoods (260 polygons)

[Intel Core i7 Quad-Core CPU @ 2.80GHz, 16GB RAM, NVIDIA GTX 1060 GPU, 6GB memory (using only 3GB)]
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CPU-GPU data transfer takes a significant amount of time 
Bounded Raster Join is 4X faster than GPU Baseline

[Max resolution: 8192, Grid index: 10242 cells]



• Express queries as graphics 
primitives and use modern GPUs

• Aggregating 850M taxi records over 
NYC neighborhoods in ~1 second 
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GPU Rasterization enables Interactive Spatial Queries
[VLDB18, SIGMOD18]
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Clipped Minimum Bounding Boxes for Efficient Spatial Indexing

Clipped Bounding Box

[ICDE18]

Minimum Bounding Box

Improve precision by subtracting out empty bounded areas
è Answering a spatial range query on 1B objects in less than 200ms

Empty space è
Ineffective filtering



Category-aware spatial data organization 
è Up to 12.3X faster queries on 10 different neuron categories
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Workload-Aware Indexing enables Ad-hoc Spatial Queries

Index per category Distinct group per category

Category-oblivious partitioning

Index over union

[ExploreDB16]
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Quadtree Bitmap Decomposition for Scalable Time Series Indexing
[SSDBM15]Value-time searches exploiting space-time similarity 

è From 9X to 23X faster queries on neuroscience data

Bitmap 
encoding

Bitmap grouping
Exploit inter-similarities

Quadtree decomposition
Exploit intra-similarities



Thesis Statement
Modern applications need to explore large amounts of spatial
and temporal data at interactive speeds, challenging
traditional query processing techniques that rely on time-
consuming computations and inefficient access methods.

Query operators that exploit specialized hardware and
workload-aware access methods enable scalable and
interactive exploration of spatial and temporal data.
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Looking Ahead

• Approximation-based spatial data processing
– Fine-grained approximations and omission of exact geometric tests
– Distance-based error bound
– Trade precision / storage space for performance

• Utility of graphics techniques for spatial data processing
– GPU rasterization for real-time approximation
– 3D Join  è Collision Detection
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Thank you!


