
Key Ideas

- Decompose spatial operators into graphics primitives.
- Couple join and aggregation.
- Trade off accuracy for interactivity.

Accurate Variant

Point-in-Polygon tests only at the boundary.

I. Render Points: Aggregate points within each pixel, and store result in pixel color channels.

II. Render Polygons: Aggregate pixel values inside the polygons.

Accuracy Bound

- Bound the Hausdorff distance between the input and the pixelapproximated polygons.
- Smaller pixel size → higher accuracy.

Hardware

Intel Core i7

Quad-Core @2.8

GHz, 16GB RAM. NVIDIA GTX 1060

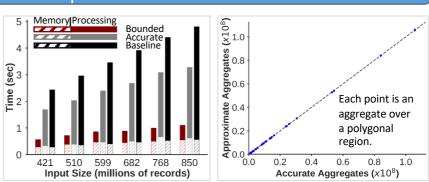
GPU, 6GB VRAM

(usage limited to

3GB). OpenGL

implementation.

Data Sets


NYC Taxi data (over 868 million

points), 260 NYC

neighborhood

polygons.

Experimental Evaluation

п

<u>Performance</u>

Only 1.1 seconds for 850 million points.

<u>Accuracy</u>

GPU resolution might

given accuracy bound.

be insufficient for

increase accuracy.

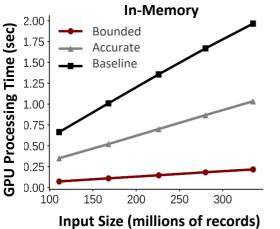
Split canvas to

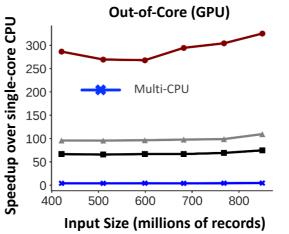
All points close to the diagonal \rightarrow negligible errors.

Data Sets used in the Demonstration

Point Data Sets

Name	# Points	# Attributes
Тахі	380,633,852	6
Restaurants	24,957	2
Sky Exposure	379,387	4
Schools	1,817	3
Pluto	42,638	8
Crime	939,526	3
Subway	470	2
Noise	274,155	3

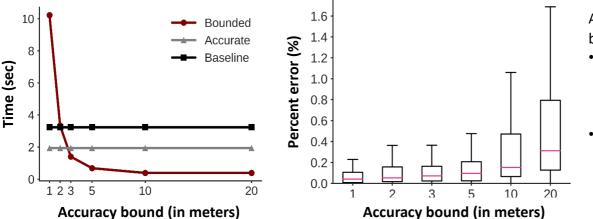

Regions			
Name	# Polygons	Avg. size of Polygon	
Lots	42,638	11.6	
Neigh- borhoods	357	587.9	
Zip Codes	263	1,061.9	
Street Network: Graph with 379,387 nodes			


Additional Experimental Results

Databases don't support interactive responses:

- A join between only 10 neighborhood polygons and the taxi data took over 10 minutes.
- Bounded Raster Join takes only 1.1 seconds for 260 neighborhood polygons and 850 million points.

Performance



Bounded Raster Join:

- is over 4 times faster than the accurate versions.
- achieves speedup of over two orders of magnitude over a single-core CPU implementation.

Trading off accuracy for interactivity

As the accuracy bound becomes tighter:

- more rendering passes are required, increasing the query time.
- the approximate aggregate results converge towards the accurate values.

The Raster Join approach has been published at PVLDB 11, 3 (2017) (to be presented at VLDB 2018) under the title: **GPU Rasterization for Real-Time Spatial Aggregation over Arbitrary Polygons.**

E. Tzirita Zacharatou (<u>eleni.tziritazachatatou@epfl.ch</u>), H. Doraiswamy (<u>harishd@nyu.edu</u>), A. Ailamaki (<u>anastasia.ailamaki@epfl.ch</u>), C. T. Silva (<u>csilva@nyu.edu</u>), and J. Freire (<u>juliana.freire@nyu.edu</u>). We have made the code available at: <u>https://github.com/vida-nyu/raster-join</u>