Improving Spatial Data Processing by Clipping Minimum Bounding Boxes

Darius Sidlauskas

EPFL

Eleni Tzirita Zacharatou

EPFL

Sean Chester NTNU

Anastasia Ailamaki
EPFL

Brain model (axons)

97% of the Minimum Bounding Box is empty

Empty space \rightarrow unnecessary I/Os

Up to 64% of the accessed leaf nodes are false hits

Tighter structure (convex hull)

Empty space from 97% to 37%, but requires 49+ points

How to reduce dead space with only few extra points

"Light cuts" using only few extra points

"Light cuts" using only few extra points

45% reduction in empty space with just 3 extra points

Clip point

- Relevant to a corner of the Minimum Bounding Box.
- The rectangular area between the clip point and the corner is dead.

Low representation overhead for clipped areas

Clipped Bounding Box (CBB)

 Augments the Minimum Bounding Box with a set of clip points.

The lesser the retained volume, the better the approximation.

Challenge: Choice of clip points

Choose ≤ k clip points that maximize the eliminated volume

Candidate clip points

- For given corner Rb:
 - Consider only points in the outer surface of the objects o_i.
 - Consider only the closest corner o_i^b.

Candidate clip points

- For given corner Rb:
 - Consider only points in the outer surface of the objects o_i.
 - Consider only the closest corner o_i^b.

Skyline clip points

- For given corner Rb:
 - Consider only points in the outer surface of the objects o_i.
 - Consider only the closest corner o_ib.
 - Only the clip points in the Skyline of {o_i^b} are valid clip points!

Skyline-based CBB

- Get skyline points with respect to each corner Rb.
- Choose up to k points.

Skyline-based CBB (k = 1)

Skyline-based CBB (k = 2)

Skyline-based CBB (k = 3)

Stairline clip points

- "Between" two skyline points.
- Retain the "best" value in each dimension.
- Clip away significantly more dead space.
- Require more expensive pre-processing.

Stairline-based CBB

- Get stairline points that are valid clip points with respect to each corner R^{b.}
- Choose up to k points.

Stairline-based CBB (k = 1)

Stairline-based CBB (k = 2)

Stairline-based CBB (k = 3)

Stairline-based CBB (k = 4)

Stairline-based CBB (k = 5)

Experimental Setup

- **R-tree variants** Quadratic [QR-tree], Hilbert [HR-tree], R*-tree, Revised R*-tree [RR*-tree]
- Range queries
 - High: ≈ 1 object per query
 - Medium: ≈ 10 objects per query
 - Low: ≈ 100 objects per query
- Hardware Quad-core Intel Core i7-3770 CPU @ 3.4GHz, 16GB RAM, 500GB HDD - 7200RPM

rea02 ~2M elements

axo03 ~2.5 M elements

par02/par03
2³⁰ elements

Spatial Join

Dead space elimination

Stairline clipping

CBBs remove 27% - 60% of dead space

Range query performance

Stairline clipping

≈26% I/O reduction across all R-trees/workloads

Querying 1B spatial objects

Enabling interactive times for 1B objects

Take home message

The Minimum Bounding Box (MBB) is ubiquitous

- Compact
- Cheap intersection tests
- Poor approximation of real data: can be > 90 % empty
- → up to 64% unnecessary I/Os!

The Clipped Bounding Box

- Augments the MBB with few additional clip points
- Retains the simplicity of the MBB
- Eliminates up to 60 % of dead space
- Enables interactive exploration of 1B objects

Thank you!