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Spreadsheets are widely used for data exploration. Since spreadsheet systems have limited capabilities, 

users often need to load spreadsheets to other data science environments to perform advanced 

analytics. However, current approaches for spreadsheet loading suffer from either high runtime or  
memory usage, which hinders data exploration on commodity systems. To make spreadsheet loading  

practical on commodity systems, we introduce a novel parser that minimizes memory usage by tightly 
coupling decompression and parsing. Furthermore, to reduce the runtime, we introduce optimized 

spreadsheet-specific parsing routines and employ parallelism. To evaluate our approach, we implement 
prototypes for loading Excel spreadsheets into R and Python environments. Our evaluation shows that 

our novel approach is up to 3× faster while consuming up to 40× less memory than state-of-the-art 
approaches. 
Artifact Availability: The source code is available at https://github.com/fhenz/SheetReader-r. 

 

 
 

 

1. Introduction 

Spreadsheets are widely used for data exploration and analysis 

due to their intuitive layout [1,2]. While modern spreadsheet sys- 

tems provide some analysis tools, such as PivotTables and aggre- 

gation formulas, they do not support more advanced tasks, such 

as iterative analyses and model building. As a result, to perform 

their analyses, users turn to more specialized data science envi- 

ronments, such as R and Python, that provide ecosystems with a 

plethora of data science libraries. However, loading spreadsheets 

into different environments poses an important bottleneck with 

respect to both runtime performance and memory consumption. 

Consider the following real-world example, which refers to 

a common use case in financial organizations. A data scientist 

needs to determine factors indicative of default risk from loan 

data for particular businesses. To predict the repayment capacity, 

she wants to run a logistic regression analysis. The relevant data 

is stored in spreadsheets and includes information about the 

business, such as sales, inventory, and years of activity. For data 

exploration and model validation on her laptop, she uses the R 

language and the corresponding libraries. Since the data is only 

available in spreadsheet files, before training the model, the first 
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preprocessing step consists of loading the data. However, she no- 

tices that her data pipeline is slow. To illustrate the performance 

of such a pipeline, we show a runtime performance breakdown 

for different libraries in Fig. 1. Specifically, we compare two state- 

of-the-art Excel parsers for R (i.e., openxlsx and readxl) with the 

highly optimized CSV parser (data.table) when processing the 

same data in the appropriate format. We observe that when 

running this pipeline on CSV files, loading the dataset takes as 

long as training the model. On the other hand, when it comes to 

spreadsheets, the data loading step dominates the runtime com- 

pletely when using state-of-the-art libraries. Of course, the CSV 

format is very different from the spreadsheet format; however, 

with our experiment, we aim to show that existing techniques 

for spreadsheet loading pose important bottlenecks in current 

data science pipelines. We provide the experimental setup and 

configuration in Section 8. 

Fig. 2 further illustrates the inefficiency of existing solutions 
for the same real-world data. We observe that the fastest Excel 
parser takes around 30 s to load 172 MB of data while consuming 
up to 13 GB of memory. Compared to the CSV parser that only 
takes 4 s and consumes up to 1.1 GB of memory, this is an 

overhead of 7.5× for runtime and almost 12× for memory usage. 

In contrast, the most memory-efficient Excel parser consumes up 

to 5 GB memory, which represents an overhead of 4.5×, but is 

40× slower, taking 160 s to parse the file. This performance gap 
is due to the fact that spreadsheet parsers are not specialized to 

exploit the spreadsheet file structure. Consequently, and given 

that many users work on commodity hardware (e.g., business 
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shows, SheetReader significantly reduces the data loading bottle- 

neck for spreadsheet files in data science pipelines, achieving a 

better balance between data loading and model training. Fur- 

thermore, we introduce two parsing approaches for SheetReader 

with trade-offs between runtime performance and memory con- 

sumption. Our first approach, consecutive parsing, achieves very 

fast loading times by heavily utilizing parallelization. The second 

approach, interleaved parsing, while also employing paralleliza- 

tion, primarily aims to minimize memory consumption by tightly 

coupling decompression and parsing. 

Contributions. Our contributions are summarized as follows: 

• We introduce spreadsheet-specific optimizations and em- 
ploy parallelism that requires minimal synchronization to 

Fig. 1. Runtime performance breakdown for a data science pipeline that loads 

data from raw files. Prior to model training, raw data is loaded using state-of- 

the-art CSV and spreadsheet parsers. Loading data from spreadsheets dominates  

the runtime. Our approach alleviates the spreadsheet data loading bottleneck. 

 
 

laptops, desktops), loading spreadsheets can easily become a 

significant bottleneck in data science applications. 

To perform efficient analyses, users need tools that allow them 

to quickly load their spreadsheet data without consuming a large 

amount of resources. However, although spreadsheets are widely 

used among data scientists, there has been little work on inter- 

operability with data science environments. Typical spreadsheet 

applications, such as Microsoft Excel and LibreOffice Calc, store 

data as a collection of individually compressed XML structured 

files. Existing tools for converting these data collections into 

an appropriate data format for the target environment rely on 

general methods for decompression and XML parsing (i.e., DOM 

and SAX) [3,4]. Specifically, state-of-the-art DOM-based parsers 

materialize the entire XML file in memory, thereby suffering from 

high memory usage. In contrast, SAX-based parsers expose a large 

number of parsing events through their event-based API, suffering 

from bad runtime performance. 

We believe that generalized XML parsers are not well suited to 

achieve good loading performance in data science environments, 

as they suffer from high runtime performance and excessive 

memory usage. We argue that a specialized solution is needed 

to overcome the runtime and memory consumption bottlenecks 

when loading spreadsheets in data science environments. The 

solution should exploit the spreadsheet file structure and its 

characteristics and perform the parsing in the shortest time fea- 

sible while also minimizing memory consumption. We propose 

SheetReader, an efficient specialized spreadsheet parser. As Fig. 1 

reduce the runtime for spreadsheet parsing. Furthermore, 

we minimize memory utilization by tightly coupling decom- 

pression and parsing. 

• We introduce two parsing approaches that allow users to 
choose between runtime and memory utilization based on 

their needs. The consecutive approach achieves fast load- 

ing times through massive parallelization, but its memory 

utilization is data-dependent. In contrast, the interleaved ap- 

proach uses a configurable and constant amount of memory 

while still achieving low runtime. 

• We provide a general solution for different data science en- 
vironments, by storing the parsed data in an environment- 
agnostic intermediate data structure. 

• We experimentally show that SheetReader outperforms the 

existing solutions by up to 3× and 40× in terms of runtime 

and memory utilization, respectively. We also show that 

parallelizing the decompression further reduces the runtime 

by around 35%. 

This paper extends [5] with the following contributions: 

• We present the challenges of spreadsheet parsing and an- 

alyze in great detail both theoretically and experimentally 

the inherent limitations and inefficiencies of state-of-the-art 

DOM-based and SAX-based parsers. 

• We propose a new technique for parsing spreadsheets with- 
out dimension and location information, thereby general- 

izing SheetReader to different spreadsheet applications. In 

addition, we evaluate this new technique experimentally. 

• Finally, we develop a new prototype for SheetReader im- 
plemented in Python. Unlike our previous work that only 

evaluated an R prototype of SheetReader, this paper also 

presents experimental results for our Python prototype. 

 

 
 

Fig. 2. Performance of existing R packages for parsing a real-world spreadsheet and the corresponding CSV file. 
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turn also be a back-reference. Back-references can point to pre- 

vious blocks, as long as the distance does not exceed a sliding 

window of the last 32 KB of decompressed data. As a result, 

Deflate documents are challenging to decompress in parallel, 

because to decompress a given block, all previous blocks need to 

be decompressed first. 

XML parsing. There exist two dominant approaches for XML 

parsing, DOM (Document Object Model) and SAX (Simple API for 

XML) [3,4]. The DOM approach maps the XML file contents to 

an in-memory tree and provides an interface that allows to In 

contrast, the SAX approach exposes an event handling interface. 

While traversing the XML document, the SAX parser fires events 

for the found XML entities (tags), which then trigger the previ- 

ously registered handlers. DOM is well-suited for random access. 

However, a major disadvantage regarding resource consumption 

is that it needs to materialize the whole document in memory 

before parsing it. SAX parsers do not experience this bottleneck. 

However, the event handling interface makes it challenging to 
Fig. 3. Spreadsheet structure (simplified). 

 

 
Outline. Next, after introducing the background in 

Section 2, we analyze the limitations of state-of-the-art spread- 

sheet parsers theoretically and further validate our theoretical ob- 

servations experimentally in Section 3. Then, we give an overview 

of SheetReader and describe its parsing approaches in Sections 4 

and 5. Furthermore, we describe additional parsing techniques 

and spreadsheet-specific parsing optimizations in Sections 6 

and 7, respectively. Section 8 presents an experimental evaluation 

of both our R and Python prototypes against state-of-the-art 

solutions using real-world and synthetic datasets. We discuss the 

related work in Section 9 and conclude in Section 10. 

 
2. Background 

 
Spreadsheet standards. We describe the structure of a spread- 

sheet, focusing on the file format currently used by Excel, known 

as Office Open XML (OOXML) and standardized as ECMA-376 [6]. 

Part 2 of ECMA-376 specifies the Open Packaging Conventions 

(OPC) that describes the general structure of OOXML files. Accord- 

ing to OPC, OOXML files are ZIP archives containing a collection 

of XML files, with some restrictions on file names and extensions 

for describing the types and relationships. 

Fig. 3 provides a simplified overview of the spreadsheet struc- 

ture. Excel documents consist of a workbook that can contain 

several worksheets. The workbook determines the names, IDs, 

and archive locations of all the spreadsheets. The worksheets, 

e.g., sheet1.xml in the figure, store the actual data. Additionally, 

Excel saves strings in a separate file from the actual worksheets, 

sharedStrings.xml, where they are referenced by index. The 

top level reserved files contain metadata that allows to identify 

files relevant for further processing and serve as an entry point 

for programs. Specifically, valid Excel files require the top level 

relationship file /_rels/.rels that specifies the locations of the 

workbook and the shared strings file inside the archive. 

As stated in the OOXML specification, the XML files in the 

ZIP archive can be either uncompressed or compressed using 

the Deflate format. Deflate [7] is a block-based compression 

format with dynamic block sizes. It arranges the blocks in a 

stream and compresses them individually. Although it is possible 

to compress an entire document into a single large block, using 

smaller blocks typically improves the compression ratio. Within 

a block, Deflate uses duplicate string elimination, a technique 

where duplicate series of byte streams are replaced with back- 

references to the previous identical byte stream, which can in 

keep track of the entire document while parsing it, and leads to 

inefficient implementations. 

Even though DOM and SAX approaches provide a solution for 

parsing XML documents, they are both very generic, i.e., they are 

designed to support arbitrary XML structures. We observe that for 

parsing spreadsheets it is not necessary to employ such generic 

approaches, as spreadsheet XML files have a very specific XML 

file structure that is defined by their specification. We argue 

that a specialized parser for spreadsheets can exploit their specific 

structure and find the sweet spot between DOM and SAX ap- 

proaches, thereby offering reasonable memory consumption and 

fast runtime performance at the same time. 

 
3. State-of-the-art spreadsheet parsers and their limitations 

 
Overall, the goal of this work is to provide an efficient spread- 

sheet parser, which keeps memory consumption low and pro- 

vides high runtime performance at the same time. In this section, 

we describe the general requirements for spreadsheet loading 

and analyze how existing XML parsing approaches can be em- 

ployed for spreadsheets. In particular, we focus on their inherent 

limitations with regard to our optimization goals (low mem- 

ory consumption, high runtime performance), and validate our 

hypotheses experimentally. Finally, we discuss our findings and 

conclude that to achieve our optimization goals, it is necessary to 

design a new specialized spreadsheet parser. 

 

3.1. Spreadsheet parsing challenges 

 

Designing a spreadsheet parser is a non-trivial task due to the 

complexity of the spreadsheet file format. Spreadsheets separate 

data into multiple individually compressed XML files and store 

strings in a dedicated file that is shared by all worksheets. Before 

discussing existing approaches for spreadsheet parsing, we ex- 

amine the challenges that arise from the spreadsheet file format. 

First, the XML files comprising a spreadsheet need to be con- 

verted into a suitable data structure that can be returned to the 

user. To facilitate the transfer of data from different spreadsheet 

file types to different software environments, we examine the 

requirements for a general intermediate data structure. Then, we 

discuss how to handle string parsing and decompression. 

Intermediate data structure. Overall, we assume that a spread- 

sheet parser requires to store data in an intermediate data struc- 

ture, before this is mapped to a specific runtime environment 

data structure, e.g. R or Python Pandas dataframes. Spreadsheets 

contain a lot of metadata, which are not necessary when mapping 

them to tabular-like abstractions in data processing environ- 

ments. We examine the data types found in spreadsheets and 
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Table 1 

Mapping from spreadsheet (Excel in particular) types to native data types. 

 

 

 

 

 
Fig. 4. Overview of the DOM parsing process. 

 
 

how to store the data that is strictly necessary in an intermediate 

data structure. While keeping the memory footprint minimal is 

a major concern, we refrain from using techniques that would 

significantly affect runtime adversely, such as in-memory com- 

pression. A cell value can be one of seven simple types or blank.  

For an intermediate data structure, these types can be mapped to 

booleans, (unsigned) integers, and floats as shown in Table 1. This 

means that cell values can be stored in a type union of boolean, 

8-byte integer, and 8-byte float, resulting in a total of 8 bytes 

of data plus 1 byte of type information per stored value. String 

tables, however, are not included in this calculation, as their 

memory usage depends on the number of unique strings and their 

lengths. For utmost memory efficiency, they are typically stored 

as null-terminated strings in contiguous memory blocks. How- 

ever, considering the performance penalty of seeking through  

these blocks to locate wanted strings, it may be more efficient 

to store the strings in an array-like data structure using pointers. 

Inline strings and formula strings can be directly converted into 

shared strings by adding their values to the string table (or even 

a different one) and storing the table index. For cells of type 

Date (d), the cell value as stored in the file (presumably an ISO 

formatted date) is simply read as is and similarly stored as a  

string. Errors can be stored as any type as long as they are marked 

the appropriate type. 

String handling. As discussed, Excel saves strings in a separate 

file from the actual worksheets and references them by index, 

allowing for simultaneous parsing of the string table and the 

worksheet. However, the exact strings that need to be parsed can 

only be determined during the parsing of the worksheet. As all 

worksheets share a single string table, there may be significantly 

more strings present than is actually needed. With regard to 

memory consumption, this means that the total consumption for 

parallel string and worksheet parsing would be the sum of both. 

With regard to runtime performance, an improvement can be 

achieved depending on the sizes of the shared string table and the 

worksheet. A potential bottleneck, however, arises with a large 

number of unnecessary strings. 

On the other hand, parsing the strings after the worksheet 

would allow us to only parse strings that are strictly needed since 

we parsed all cells requiring strings beforehand. With regard 

to memory consumption, this means that we require only the 

maximum memory requirements of each of the tasks (worksheet 

and string parsing). With regard to runtime performance, this 

depends on the number of actually used strings. 

Decompression. Spreadsheets are ZIP archives that contain indi- 

vidual compressed XML files. This means that to parse spread- 

sheets, one needs to first decompress them. In spreadsheets, 

individual files are compressed as Deflate streams. A Deflate 

stream consists of multiple blocks that are individually optimized 

for their respective contents. Each block possesses a short header 

signaling its compression method and if it is the last block of the 

stream. However, a plain Deflate stream does not contain any 

information about the stream itself, such as size (compressed and 

decompressed) or error-checking values. To compress individual 

files using the Deflate algorithm and maintain their metadata, 

one can use the well-established gzip file format. Generally, a 

ZIP archive (restricted according to the OPC standard) contains 

multiple files, in our case the individual XML files. Additionally, 

a ZIP archive contains a central directory with metadata, most 

importantly the uncompressed and compressed size, filename, 

and offset inside the archive. Most of this data is also present in 

the local file header, located at the offset for that respective file, 

immediately followed by the actual compressed data. 

The particular file structure of spreadsheets, i.e., that indi- 

vidual XML files are stored as separate Deflate streams with 

known metadata, presents an opportunity for parallelizing the 

decompression process across multiple worksheets and string 

files. However, the Deflate format by default makes no accommo- 

dations for parallelizing the parsing of a single stream (i.e. file), 

as the back-references hinder attempts at fully parallel decom- 

pression. Any block may require an arbitrary number of previous 

blocks to be decompressed first to resolve these back-references. 

Because the spreadsheet XML contains a large portion of re- 

peated strings (the repeating structural elements), even the last 

compressed block may require information from the first block. 

Nevertheless, as spreadsheet loading comprises decompres- 

sion and parsing tasks, there is an opportunity to parallelize the 

decompression and parsing process. For that, there exist two 

approaches: A sequential approach where the whole document 

is decompressed before parsing it, and an interleaved approach 

where the document is split into chunks which are decompressed 

and parsed in an interleaved manner. While the sequential ap- 

proach is easier to handle, it may require a large amount of 

memory, as it needs all decompressed files in memory. Depend- 

ing on the decompression method, it might also need to load the 

complete compressed data in memory. To avoid consuming such 

a large amount of memory, the interleaved approach requires 

only a constant amount of memory that is reused throughout 

decompression and parsing. In the first step, we decompress a 

chunk of the document, while in the second step we parse the 

decompressed content. Of course, those steps are repeated until 

the end of the document, and can also be executed in parallel for 

multiple chunks. However, to parallelize the process, we assume 

that the decompression and parsing steps can handle arbitrary 

chunks of XML documents, which is a challenging task. Overall, 

the sequential decompression/parsing approach is simple but 

requires holding the whole decompressed document in memory, 

while the interleaved is more complex but allows to recycle 

memory, and hence only requires a constant amount of memory. 

 

3.2. Parsing spreadsheets with DOM 

 

The tree structure found in a spreadsheet’s XML files naturally 

fits the Document Object Model (DOM). Therefore, one can parse 

the XML file into a DOM tree, as shown in Fig. 4. 

DOM abstractly defines the capabilities that an XML document 

API should expose. In particular, it supports navigation within 

the tree, i.e. accessing parent, children, and sibling nodes from 

any node. Standard parsers do this by storing easily retrievable 

Spreadsheet type Internal type Size (bytes) 

Boolean Boolean 1 

Date Integer 8 

Error   

Inline string Integer 8 

Number Float 8 

Shared string Integer 8 

Formula string Integer 8 
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Listing 1: Excel worksheet example with node tree resulting from DOM parsing 

<worksheet> 

<dimension  r ef =" A1:D2 " / > 
<sheetData> 

<row r="2" > 
<c r="B2" t=" s " > 

<v>1< / v> 
< / c> 
<c  r="D2" > 

<v> 1. 23 < / v> 
< / c> 

< / row> 
< / sheetData> 

< / worksheet> 

 
 

<row r="2" x14ac:dyDescent=" 0. 25 " spans="1:5 " > 

Listing 2: Excel worksheet XML extract: A row opening tag 

 

references to these related elements inside each element. Indirect 

methods that involve traversing the tree to find such elements 

are also possible. Other capabilities such as namespaces, XPath 

navigation, and node event handlers are also specified [8], but not 

relevant to our work and thus not discussed further. 

Regarding memory consumption, DOM parsing requires pars- 

ing the whole XML document into a tree data structure. We show 

an example of such a process in Listing 1. We estimate a lower 

bound for the memory required for storing a parsed spreadsheet 

XML document in a DOM tree structure. We achieve this by ana- 

lyzing the relationships between the spreadsheet data (rows and 

cells) and the resulting XML file (XML elements and attributes). 

This allows us to calculate the total number of XML elements and 

attributes depending on the spreadsheet size (number of rows 

and cells). We then use a theoretical minimal implementation 

that provides a reasonable minimum of the capabilities specified 

by DOM (navigation) to determine how much memory is required 

for the elements and attributes stored as nodes in a tree data 

structure. We use the resulting estimate to decide whether DOM 

parsing is a viable approach for our use case. 

Listing 1 shows the basic composition of the XML elements 

involved. We will only discuss the contents of the sub-tree origi- 

nating from the sheetData element. According to the specification, 

the sheetData element contains only row elements. We further 

assume that each row element contains the same number of c 

(cell) elements and no others (the other possible elements are 

the so-called ‘‘Extension Lists’’). Additionally, every c element 

contains a single value element (either v or is, depending on the 

cell type), which contains the actual cell value as text. If the cell 

value is derived from a formula, the value element would have 

an additional f element as a sibling, but for simplification, we 

assume none of the cells contain formulas. Because XML allows  

the content of an element to be a mix of text and other XML 

elements, sections of text also need to be stored as nodes in the  

tree. We observe that every spreadsheet cell corresponds to two 

XML elements and one text node in parent–child relationships, 

and every spreadsheet row corresponds to one XML element. 

Additionally, the elements can have a number of attributes, 

some of which are relevant to parsing the data but also some that 

are not, e.g., attributes that specify the row height. For this dis- 

cussion, we assume that every row and every cell element has the 

respective r attribute containing the corresponding location in- 

formation. If the cell type is not a number or that number should  

be interpreted differently (e.g. as a date) or the type is explicitly 

Table 2 

Number of XML nodes (element and text nodes) and attributes for worksheets  

with the given number of rows. The number of columns is 100, all cells have 

the number type, and there are no formula or inline string elements. Using the 

RapidXML DOM parsing library. 

Rows XML nodes XML attributes 

10 000 3 010 308 1 030 223 

50 000 15 050 308 5 150 223 

100 000 30 100 308 10 300 223 

200 000 60 200 308 20 600 223 

300 000 90 300 308 30 900 223 

400 000 120 400 308 41 200 223 

500 000 150 500 308 51 500 223 

600 000 180 600 308 61 800 223 

 

 
stated even for a number, another attribute is added (t for type or 

s for style). Excel in particular omits explicitly specifying the type 

for numbers, but also adds some attributes to row elements that 

are not relevant for parsing the data. This can be seen in Listing 

2, namely the x14ac:dyDescent and spans attributes. In total, this 

results in three attributes for every spreadsheet row (of which 

two are irrelevant), one attribute for every cell, one additional 

attribute for every non-numeric cell, and finally one additional 

attribute for every styled cell. We analyzed the number of nodes 

and attributes retrieved from Excel worksheets of differing sizes 

by a representative DOM library (RapidXML) and show the results 

in Table 2. 
When storing element nodes in a tree data structure and pro- 

viding access through a DOM API, how the relationships between 

the nodes are stored needs to be balanced between efficient 

storage and efficient access. Nodes could contain information 

about all adjacent nodes, meaning parent, siblings, and children, 

and thus offer direct and fast navigation of their immediate 

neighborhood. This requires storage that allows for referencing 

at least three nodes (parent, previous sibling, next sibling) and 

some dynamic list of child nodes. On the contrary, nodes can also 

contain only minimal relationship information, and navigation 

between nodes is done indirectly. At a minimum, nodes only need 

to store references to two nodes, for example, their next sibling 

and their first child node. All other navigation from some starting 

node would be accomplished by traversing the tree through a 

sequence of these references. Additional necessary information 

would be stored in the traversing procedure and returned upon 

encountering the starting node, e.g., for retrieving the previous 

sibling of the starting node, the most recently visited node while 

worksheet 

dimension ref 

sheetData 

row r 

c 

v 

r 

t 

c r 

v 



6  

 

traversing would be stored and returned upon arriving at the 

starting node. The attributes of elements can be stored similarly, 

directly as some list inside the element node data structure, or as 

a singly-linked list with only a reference to the first attribute. 

Elements and attributes need to store more than just their 

relationships to other elements or attributes. All elements have 

a name, which is present in their respective opening and closing 

tag and describes their role in the document, e.g., the row element 

opening tag starts with its name row. Elements also have a value, 

consisting simply of the text between their opening and closing 

tags. Similarly, attributes also have a name and value, e.g., the 

r attribute seen in Listing 2 has the name r and the value 2. We 

group methods for storing names and values into two approaches. 

When keeping the original document in memory, i.e., some 

memory stays reserved for and filled by the entire document 

content, elements and attributes can simply reference certain 

document positions paired with lengths to store their names 

and values. Nodes would thus only need four further fields, two 

respectively for name and value. The length can be encoded either 

simply as the actual length of the targeted string or as a reference 

to its end. If the original document is not used for purposes other 

than as name and value storage, the character after a targeted 

string can be set to null, thus null-terminating the string and 

removing the need for storing its length separately (halving the 

number of fields required). This is possible because any content 

that will be modified has already been parsed and all names and 

values are followed by some character that is guaranteed to not 

be part of another name or value. Element names are followed 

by a whitespace, >, or / character, and element values are termi- 

nated by a closing tag (which will have been parsed to determine 

the end of the value) beginning with a < character, attribute 

names are followed by a whitespace or a structural equal sign and 

attribute values are ended by a structural quotation mark. While 

potentially costly memory allocations and copies are avoided 

for storing names and values, there are also disadvantages. It is 

effectively impossible to perform storage optimizations like string 

deduplication, and superfluous structural characters (<, >, /, etc.) 

are also kept in memory. 

If it is not possible to keep the document in memory, or 

simply not desired, names and values will need to be copied 

and stored separately. Elements and attributes themselves are 

stored virtually identically to the previous approach, just that 

the references point to different locations in memory. The parser 

needs to allocate and manage this memory for storing the names 

and values. There are methods to reduce the required memory 

compared to naively copying every and all required strings in- 

dividually. One basic technique is string deduplication. If some 

string is encountered that matches a string already present in the 

storage, the reference can be pointed to the existing string instead  

of storing the duplicate and pointing to that. Even if a document 

contains only unique elements, the strings for the opening tag 

and the closing tag of an element are the same, and deduplication 

would thus reduce memory usage considerably. 

We estimate a lower bound for the total memory a DOM 

tree structure requires using a theoretical minimal implementa- 

tion. This minimal implementation fulfills only part of the DOM 

API, arbitrary navigation from any node as a starting point. We 

disregard memory used for storing the actual data of dynamic 

content (element and attribute names and values) and make an 

estimate with only structural elements. This is done by counting 

the references for all nodes and multiplying that number by some 

factor that represents the storage required for a reference. 

We arrive at a minimum of 5 references per element node, 3 

references per text node, and 3 references per attribute. All ele- 

ments and attributes have associated names and values, requiring 

at least two references each, assuming that the names and values 

 
Table 3 

Size of the DOM tree structure in memory with a minimal implementation 

(see Eq. (1)) compared to the uncompressed source document size. Tree node 

references have a size of 8 bytes. The number of columns is 100, all cells have 

the number type, and there are no formula or inline string elements. 

Rows Worksheet size (MB) Calculated minimum tree size 

(MB) (relative increase) 

10 000 43 129 (3.0) 

50 000 219 643 (2.9) 

100 000 439 1286 (2.9) 

200 000 891 2573 (2.9) 

300 000 1342 3859 (2.9) 

400 000 1793 5146 (2.9) 

500 000 2244 6432 (2.9) 

600 000 2695 7718 (2.9) 
 

 

 

 
are zero-terminated to determine their length. Previously we 

determined that at a minimum, element nodes need to reference 

two other nodes, for example their first child and next sibling. 

Leaf nodes are an exception (all text nodes are leaf nodes), which 

cannot have children and thus require only a reference to their 

next sibling. Additionally, element nodes (apart from text nodes) 

require a reference to their attributes. Attributes themselves only 

require a single reference to their next sibling attribute. 

The analysis of the relationship between spreadsheet data and 

XML elements has shown that every spreadsheet cell results in 

two element nodes and one text node, and every row in one ele- 

ment node. Disregarding irrelevant attributes and assuming every 

cell has neither their type specified (i.e. they are numeric) nor a 

style assigned, every cell and every row has one attribute each. 

Following Eq. (1), with nref being the total number of references, 

ncell the number of cells containing a value, and nrow the number 

of rows containing at least one filled cell, this results in 16 

references per spreadsheet cell and 8 references per spreadsheet 

row. This is also illustrated in Fig. 5. 

 
nref = 5 ∗ 2 ∗ ncell + 3 ∗ ncell + 5 ∗ nrow + 3 ∗ ncell + 3 ∗ nrow 

= 16 ∗ ncell + 8 ∗ nrow (1) 

Assuming that references are implemented as pointers to 

memory addresses, their size depends on the system architec- 

ture. For 64-bit systems, the memory addresses are usually 64 

bits wide as well, meaning references have a size of 8 bytes. 

Calculated estimates using 8 bytes per reference are shown in 

Table 3. Results for other architectures or implementations can 

be obtained by applying an appropriate factor to our estimates, 

e.g., 32-bit systems would require half the memory. It is evident 

that even a theoretical minimal DOM tree implementation leads 

to memory usage that is multiple times larger than that of the un- 

compressed source document. For 8-byte references, we can see 

that the DOM tree requires around three times the memory of the 

plain XML document, which is stable for all considered worksheet 

sizes. This factor is obviously influenced by the non-structural 

content of the document, i.e., the cell values. 

Using Eq. (1) and 8 bytes per reference results in 128 bytes per 

cell, meaning the size of the cell content would need to approach 

or exceed this value to bring the factor below 1. This can theo- 

retically be achieved with only numerical cells and thus without 

additional elements or attributes, but due to the numerical pre- 

cision limit of 17 digits, this seems unrealistic. String values are 

also unsuitable since the strings themselves are lifted out of the 

worksheet and replaced by integer indices. A feasible method to 

achieve a higher ratio of content to structure is formulas that can 

grow to be of considerable size depending on their complexity. 

Formulas introduce an additional XML element and text node, 

thus raising the number of references for a cell from 16 to 21 
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Fig. 5.  The relationship between spreadsheet data and XML elements, and the underlying DOM tree structure. 

 

resulting in 168 bytes per cell. Altogether we suppose that the 

minimum tree size exceeds the uncompressed source worksheet 

size in all but a few exceptional cases where the majority of cells 

contain formulas of considerable length. 

The excessive tree size is exacerbated considerably when ex- 

amining DOM tree implementations other than the theoretical 

minimum. State-of-the-art libraries for DOM parsing implement 

tree nodes (for elements and attributes) such that they addi- 

tionally possess references to their parent and/or their previous 

sibling [9–12]. Some approaches using linked lists for element 

children and attributes instead of arrays also add references to 

the last child or attribute of an element node [9,11]. Additionally, 

there is often no differentiation between full nodes, leaf nodes, 

and text nodes, where unnecessary references to children and 

attributes could be avoided [9,11,12]. Consequently, the number 

of references per cell can easily reach 32, leading to double the 

required memory of the minimal tree explored previously. 

In light of these findings, we only briefly discuss the additional 

storage required for the names and values of the elements and 

attributes. These considerations are not applicable to approaches 

that keep the source document in memory and use it to store 

the strings. Because there are only a few unique element and 

attribute names, the storage required for these is virtually con- 

stant and negligible next to all else. The only attribute values that 

change are for the locations of the rows and cells (the r attribute), 

and these are unique for every row and cell. Because they are 

completely dependent on the cell locations, the total storage 

required can be estimated simply from the worksheet dimensions 

(very accurately assuming that all cells in this range are serialized 

in the XML, that is, there are no blank cells). The length for the cell 

location string is determined by the column (col) and row (row) of 

the cell following len = log26 (col − 1) + 1 + log10(row) + 1, 

since the column is alphabetically encoded (1 equals A and 27 

equals AA) while the row simply increases for every power of 10. 

The cell values themselves (including formulas) are completely 

dependent on the dataset at hand, and thus their size cannot be 

reliably determined beforehand. 

Ultimately we deem DOM parsing unsuitable for loading 

spreadsheets. Even with a theoretical minimal implementation, 

the tree structure itself is significantly larger than the initial doc- 

ument. This added cost makes building and keeping the complete 

tree in memory prohibitively expensive on current consumer ma- 

chines, where this can feasibly lead to saturation of all available 

memory. Additionally, the main benefits provided by maintaining 

the DOM structure in memory, such as easier navigation of nodes 

and manipulation of the tree, are not needed for extracting the 

values from the worksheets. Once all information for a cell has 

been determined (location, type, value, etc.), access to it is no 

longer required and it can be discarded. 

3.3. Parsing spreadsheets with SAX 

 

Another prominent approach for XML parsing is to use the 

Simple API for XML (SAX). Contrary to DOM, SAX is not an ex- 

plicit specification, but rather describes a different mechanism for 

parsing. While originally developed for XML, there exist parsers 

for other languages based on this concept. SAX describes an 

event-driven model, where elements are handled individually 

during parsing. Parsers based on this approach usually expose 

an API where developers supply their own methods for handling 

different components of the document, modeled as events. A SAX 

parser reads and processes the input until it obtains enough infor- 

mation to create and send an event to the handler method. After 

the event is handled, the parser resumes collecting information 

for the next event until it reaches the end of the document. The 

granularity of these events can vary depending on the parser, 

from individual events for opening tags, closing tags, and single 

attributes to, for example, a single event for a complete tag 

(including all attributes and/or the element value). We show an 

example with SAX-generated events in Listing 3. For each opening 

and closing tag found during the XML traversal (on the left side), 

the corresponding event is called (on the right side). 
Fundamentally, SAX parsing does not retain any informa- 

tion about previously parsed document parts. Where with DOM 

parsers, developers have access to the generated DOM tree for 

potential validation and further processing, SAX offers no such 

convenience. Developers are responsible for any higher-level 

state-keeping, validation, and processing. While distinctly disad- 

vantageous regarding complexity, this is also an advantage over 

DOM parsing. Developers have full control over any processing at 

a higher level than the basic parsing routines. 

Instead of creating a full DOM tree from the XML document,  

SAX parsing allows for the extraction of specific parts with imme- 

diate deserialization. Because SAX offers full control over which 

and how the parsed XML is stored, parsing does not lead to 

the memory bottlenecks observed with the DOM approach. We 

briefly discuss the memory characteristics for SAX parsing, in 

particular, how much state the parser itself still needs to store but 

also which and how much state the developer needs to maintain. 

We now discuss the memory requirements of SAX parsing, 

i.e., what state the developer needs to keep when processing 

a document using SAX, since SAX parsers delegate the state- 

keeping responsibility to the developer. The parser itself only 

needs to store minimal state information, through which the 

required memory is effectively constant and can be considered 

negligible. Any additional memory required depends on the pro- 

cessing by the developer. 

To estimate the complexity of state-keeping for the examined 

spreadsheet formats, we analyze their structure. Spreadsheets 
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to that. This creates various advantages over general parsers 

Listing 3: Excel worksheet example with events generated 

during SAX parsing 

<worksheet> 
<dimension  r ef =" A1:D2 " / > 
<sheetData> 

<row r="2" > 
<c r="B2" t=" s " > 

<v>1< / v> 
< / c> 
<c  r="D2" > 

<v> 1. 23 < / v> 
< / c> 

< / row> 
< / sheetData> 

< / worksheet> 

 

 

mainly consist of repeating elements, rows, and cells. These el- 

ements are completely independent of each other in a valid 

spreadsheet file. Even when assuming an invalid file, the only  

state that would need to be carried over from previous elements 

is the location information, e.g., multiple rows where the location 

attribute specifies the same row number. All other state infor- 

mation only needs to be propagated to child elements, e.g. the 

type information from the c element to its v child element, to 

deserialize and interpret its value appropriately. The majority of 

state can be reused for the next sibling element, e.g., the type of 

the previous cell is irrelevant for the current cell and can thus 

be overwritten, keeping the required memory constant and to 

a minimum. Additionally, because the elements are handled by 

developer-supplied methods, values and attributes can be dese- 

rialized early. This avoids the bookkeeping of names and values 

stored in the most general format, i.e., strings, as  is the case with 

content-unaware DOM approaches. An additional benefit over 

DOM is that unnecessary elements and attributes such as those 

for formulas can be discarded immediately, preventing resources 

from being wasted. 
The sequential nature of SAX parsing lends itself to only keep- 

ing the relevant part of the source in memory instead of storing 

the complete document for the entire parse duration. Many SAX 

parsers have the ability of receiving the source document in parts, 

maintaining enough state to bridge between parts even if all 

previous content is no longer available [10,11,13]. This necessarily 

incurs some overhead, since names and values need to be copied 

to intermediate storage if they have not yet been forwarded to the 

developer handlers and the currently available source part ends. 

While this overhead is negligible in terms of total memory usage, 

the repeated allocations and copies may negatively affect the run- 

time. Loading the document in parts also means the optimization 

used by some DOM parsers of referencing the original document 

to store strings is more difficult to implement. 
While employing SAX parsing means greater complexity and 

effort for the developer compared to DOM parsing, the very low 

memory requirement independent of document size is extremely 

valuable. This can be further augmented by loading, or in our case 

decompressing, only the relevant part of the source document 

into memory. 

3.4. Parser compilers 

 

Parser compilers are based on the concept of automatically 

creating parsers that are specialized to the documents at hand. 

both in terms of runtime and memory, for example by early 

deserialization of primitive data types (integers, floats, booleans, 

etc.) instead of processing them further as strings. Additionally, 

parser compilers can expose a more convenient interface to the 

parsed content by creating custom data structures that are fitted 

to the elements in the supplied structure description. 

Previous work has discussed the approach of compiling XML 

parsers based on schemas [14,15]. While it is primarily observed 

that combining the validation step with the parsing step on a low 

level and optimizing the result achieves an advantage in terms of 

runtime, this also has benefits for memory efficiency. The authors 

mention that compiling the parser from the schema allows them 

to hardcode tag names into generated code, whereas parsers 

without or not fully utilizing schema information would need 

to store these in dynamic memory for subsequent access. XML 

Screamer [15] additionally integrates some deserialization into 

the low-level optimized routines. While again improving runtime 

performance, we suppose that deserializing as early as possible 

would be the biggest benefit for reducing memory consumption. 

Because compiler-based approaches rely on pre-written low- 

level parsing routines, deserialization of nonstandard types is 

again relegated to later processing steps. Unfortunately, the mi- 

nority of the attributes in the examined spreadsheet formats are 

standard primitives, and as such many cannot take advantage 

of this early optimization. The most common attribute, the cell 

location, is stored in spreadsheet form (‘‘A1’’) and as such needs 

custom deserialization. Additionally, how the cell value is dese- 

rialized depends on the values of attributes of the parent cell 

element. Consequently, the optimization of early deserialization 

is of limited benefit for spreadsheets. 
A rather unintuitive disadvantage of parser compilers can 

be seen with the xlsx R package. Here, the Apache XMLBeans 

Java framework2 is used to compile the Excel schema into a 
specialized parser and custom Java classes to store the parsed 

elements. The Excel standard specified various optional attributes 

for rows and cells that are only rarely used, for example, the 

cell attribute ph which indicates whether the cell should display 

phonetic information about the cell content. In total the row 

element possesses twelve optional attributes, of which only one 

is relevant for extracting the data, while the cell element has six, 

of which three are relevant. 

When creating the Java classes for the row and cell elements, 

Apache XMLBeans turns the attributes, including the optional 

ones, into class members. This drastically increases the storage 

required for the class compared to general methods of storing 

the attributes. A general method such as a linked list or array will 

generally only take as much space as there are actual attributes, 

without taking into account any optional but non-existent ones. 

Parser compilers offer significant advantages for documents 

with large complexity due to improving performance while only 

requiring the XML schema. But these compilers are still general 

solutions themselves, in that they cannot specialize for non- 

standard types or structures or may introduce features that are 

beneficial for some use cases but detrimental for others. 

 

3.5. Benchmarking state-of-the-art XML parsers for spreadsheets 

 

To validate our theoretical analysis for memory requirements 

and evaluate the overall performance of existing standard XML 

parsing libraries for spreadsheets, we perform an empirical eval- 

uation. For that, we use two synthetic spreadsheet files con- 

taining only numeric values with 100 columns and a varying 

row count and measure the memory consumption and runtime 

The compiler accepts a description of the document structure,   

e.g., an XML schema, to generate and optimize a parser according 2 https://xmlbeans.apache.org/. 
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Fig. 6.  Runtime performance (left) and memory usage (right) overview of state-of-the-art DOM and SAX libraries for spreadsheet parsing. 
 

performance. The SAX libraries were tested with empty callbacks, 

i.e., the runtime is wholly determined by the parser itself without 

any further processing. We refer the reader to Section 8 for the 

detailed experimental setup. 

The general consensus in literature seems to be that SAX 

parsing achieves superior runtime performance over DOM pars- 

ing [16–19]. Nevertheless, we observe the opposite in our exper- 

iment results ( Fig. 6). While this may be specific to the libraries 

used in the experiments, we nonetheless discuss the factors that 

may cause SAX parsing to be slower than DOM parsing. 

In particular, we can see that two of the DOM parsing libraries 

used in our experiments, RapidXML and pugixml, consistently 

achieve less than half the runtime of Expat or Xerces, the SAX 

libraries used. The DOM parser exposed by Xerces is built on-top 

of its SAX parser and thus cannot achieve better performance. 

We briefly expand on the consensus of SAX parsing being faster 

than DOM, followed by a more detailed discussion about the two 

libraries used in our experiments. 

Previous work benchmarking XML parsing establishes SAX 

as superior to DOM both in terms of memory usage and run- 

time [16–19]. We postulate that this is because SAX parsing 

defers much of the processing to the developer, in that it only 

forwards the parsed elements to the callback functions. This 

facilitates specialization according to the developers’ goals early 

in the parsing process. This is in contrast to DOM parsing, which 

is almost completely general and thus non-specialized during the 

whole parsing process and by creating a general DOM tree. We 

hypothesize that this specialization is the, or at least one of the 

main drivers for the runtime advantage of SAX over DOM that 

was found in previous work. 

We attempt to explain why our experiments yield opposite 

results by examining two libraries in more detail. RapidXML, a 

DOM library used, describes itself as an in-situ parser. This means 

that the parser does not copy strings, but instead stores names 

and values as pointers to the source document. Consequently, 

the source document needs to be kept in memory even after 

parsing has concluded, since the generated DOM tree references 

it. Avoiding the costly operations associated with copying strings 

grants this type of parser a considerable runtime advantage. 

It is our impression that memory operations, that is, allocation, 

copying, and freeing, are the main cause for the unexpected 

observed performance difference. In particular, RapidXML also 

uses self-managed memory pools for the generated DOM tree. 

This means that instead of allocating memory individually for 

the parsed elements, it preemptively allocates large blocks of 

memory that are then filled with the elements as they are parsed. 

This is generally better because it reduces system calls to the 

operating system for requesting memory and avoids memory 

fragmentation, which can help with cache locality. 

Expat, one of the SAX libraries used, also utilizes memory 

pools, but for storing strings (i.e. names and values) instead of 

structural data. This is because storing structural information to 

the extent found in DOM parsing is not a concern with SAX. SAX 

parsers need to store the data for effectively only a single XML el- 

ement. After parsing the element has concluded, the information 

is sent to the handler and afterward can be discarded, allowing 

the storage space to be reused for the next element. 

Expat is unable to use the in-situ optimization from RapidXML, 

as it is designed to accept the input document in parts. It does 

not need to keep the complete source document in memory 

during the whole parsing process on the developer, so there is 

no guarantee that the whole name or value is available when 

invoking a callback function. It cannot simply supply the handler 

method with a pointer to the beginning of the element name or 

value in the source document, because it might be located in a 

previous block which may have since been freed. This means that 

Expat copies all name and value strings into intermediate storage, 

which is then exposed to the handler method. 

We conclude that the observed runtime difference, i.e., DOM 

being faster than SAX parsing, stems from the in-situ parsing 

technique used by RapidXML. Expat has to copy the names and 

values of all elements and values it parses, while RapidXML simply 

creates pointers to the source document. The cost of copying 

seems to be the determining factor for the results of our runtime 

experiments. We broaden this conclusion to apply also to the 

other benchmarked libraries, in that guaranteed persistent access 

to the source document allows parsers to optimize how data 

is forwarded to any further processing steps without requiring 

potentially costly memory operations. 

 

3.6. General findings and discussion 

 

For our use case of parsing spreadsheets, we deem DOM 

parsing in any form unsuitable. We have shown that the memory 

required for even a minimal DOM tree implementation (without 

compression or compacting techniques) exceeds the size of the 

source document by a significant factor. Additionally, employing 

DOM parsing limits the number of potential approaches to the 

overall data loading process because creating the DOM tree is a 

prerequisite step for any further processing. 
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SAX parsing inherently possesses no such memory bottleneck 

since it does not store the document except for forwarding it to 

the developer. Unfortunately, the current SAX parsers that we 

tested do not yield satisfactory runtime performance compared 

to the other approaches. Contrary to expectations, the tested SAX 

parsers consistently take around double the runtime compared 

to the tested DOM parsers (excluding xerces-dom). The API im- 

posed by SAX also limits lower-level optimizations, e.g., skipping 

irrelevant content for extracting the data we want. 

Furthermore, we believe that parser compilers will not yield 

significant improvements over general parsers. The examined 

spreadsheet formats require custom deserialization for the ma- 

jority of elements and attributes, reducing the effectiveness of 

the restricted low-level deserialization routines introduced by 

the compilers. Additionally, the subset of the spreadsheet XML 

structure relevant for extracting the desired data is of limited 

complexity, making manually created custom parsers feasible. 

Full control over the whole parsing process allows us to avoid the 

pitfalls of the more general approaches, while also granting full 

flexibility in terms of how parsing is integrated into the complete 

data loading process. 

Overall, our findings show that each general approach has 

characteristics that do not allow us to reach our goal of mem- 

ory efficiency and good runtime performance. Creating a custom 

parser specialized for the workload at hand offers most of the 

benefits of compiler-based approaches, while also removing any 

remaining restrictions imposed by the still somewhat general na- 

ture of parser compilers. Potential bottlenecks introduced by the 

compiler (Apache XMLBeans described earlier) can be avoided. 

While creating a custom parser manually can be rather complex, 

the relatively simple structure of the spreadsheet XML limits this 

to a manageable degree. 

Similarly to compiler-based approaches, creating a specialized 

parser allows one to combine all steps of the parsing process, but 

even to the point of deserializing directly into the target data 

structure while characters are being read. This is much more 

similar to SAX than DOM, in that there is no intermediate data 

structure that stores the XML tree. Specialization eliminates many 

of the drawbacks of compiler-based and SAX parsing but also in- 

creases complexity due to the tight coupling between all parsing 

stages. All deserialization can be performed at the same step early 

in the parsing process, and the overhead of copying content for 

forwarding to event handlers is removed. The complexity is an 

argument for using parser compilers [14], in that handcrafting 

a low-level parser combining all steps gets unmanageable for 

highly complex schemas. 

As shown previously, the schemas for worksheet XML files are 

relatively flat and simple. The structural relationships between 

rows, cells, and cell values remain consistent throughout the 

document. This is also demonstrated by the regular expression- 

based approach used by the openxlsx package. One exception is 

cells of the rarely used inline string type, where the cell value is in 

the is element rather than in the v element. The main complexity 

results from the simple type (t) and style (s) attributes of the cell 

element that determine how the cell value is to be deserialized. 

In terms of memory efficiency, a custom parser only provides 

minor benefits compared to standard SAX parsing. On the other 

hand, given some assumptions about acceptable memory con- 

sumption, a custom parser allows fine-tuned management of the 

memory budget to allow other techniques or optimizations for 

improving other performance characteristics. 

 
4. SheetReader 

 
In the following, we give an overview of SheetReader’s ar- 

chitecture. We show an overview of our approach in Fig. 7. 

Fig. 7. SheetReader’s architecture. 

 

 

SheetReader expects as input parameters related to a spread- 

sheet file, and loads the worksheet contents into a data structure 

within the target environment. Users and applications submit 

parsing requests to SheetReader through its API, by providing I/O 

and parser configuration parameters 1 . The Controller is the 

core component responsible for coordinating the overall loading 

routine. At first, the Controller fetches worksheet metadata   , 

e.g. file location and sheet names, through the Metadata Handler. 

Then, the Controller initiates the loading routine by providing the 

sheet names and parse mode to the Content Handler, a compo- 

nent that decompresses input files and parses the spreadsheet 

content into an intermediate data structure . The Content Han- 

dler has two modules, the Strings Parser, which is responsible for 

parsing the shared strings XML file, and the Worksheet Parser, 

which is responsible for parsing the worksheets containing nu- 

meric data. These two parsers may operate in parallel, and have 

two different parsing modes that we describe in 5. To avoid costly 

reallocations for resizing the intermediate data structure during 

parsing, the Controller pre-allocates memory by relying on the 

available metadata, such as the file offset, archive size, and total 

strings number in the shared strings file. Our parsers assume valid 

spreadsheets as input, since spreadsheet systems, e.g. Excel, are 

unlikely to produce corrupt files. 

When parsing is completed, the Transformer executes the 

final loading step, i.e., creating the target data structure 4 . 

Contrary to the worksheet, SheetReader stores the cell data in 

column-wise data layout. This allows to transform intermediate 

data to column-based target data structures widely found in data 

science environments, e.g., R and Python Pandas Dataframes, 

without reconverting the layout. Additionally, SheetReader’s in- 

ternal intermediate data structure enables to reuse its core pars- 

ing routines in different runtimes by only implementing the 

Transformer interface and language bindings. This interface ex- 

poses methods for transforming the intermediate data structure 

into a target data structure, e.g., our prototype Transformer im- 

plementation in R converts intermediate data into a DataFrame. 

SheetReader is implemented in C++ in a target-agnostic way, 

to offload performance-critical computations to a native run- 

time [20]. The parser does not use any target-specific data types 

(except for optimization with target defines) and only the inter- 

face that forwards user options and converts to the target data 

type is specific to the particular target environment. Besides the 

build process and compiler option, the only difference in C++ 
source files between our R and Python versions is the singular 

interface file. Thus it is possible to incorporate SheetReader in 

any language/environment that provides C/C++ bindings with 

capabilities for table- or list-like data structures. 
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Fig. 8. Consecutive parsing. 

 

5. Spreadsheet parsing 

 
We introduce two parsing approaches that both the Strings 

and the Worksheet Parser components can use. These approaches 

express a trade-off between runtime performance and memory 

efficiency. The consecutive approach is optimized for runtime 

performance and the interleaved one for minimal memory usage. 

Users can choose their preferred approach based on their needs. 

Both approaches rely on the same general parsing routine that 

we outline here. As our parser targets specialized XML docu- 

ments, it operates by finding the opening and closing tags for 

specific XML elements. For example, as shown in Fig. 3, in Excel 

files, cell values <v>val</v> are enclosed in <c></c> tags, 

where the character sequence <c indicates the opening tag for 

a new cell. Inside this tag, there are attributes that contain cell 

metadata. Attributes are name-value pairs that are linked through 

the = character and are separated from other pairs by a whites- 

pace. We parse this metadata as it defines the cell location and 

type, which we use to determine where to store the cell data 

in our intermediate data structure. The character > denotes the 

end of the cell opening tag. Inside the c element, we look for the 

<v> opening tag that contains the cell value. We parse the value 

until we encounter the closing tag </v> and insert it into our 

intermediate data structure. 

 

5.1. Consecutive parsing 

 

We optimize consecutive parsing for runtime performance. As 

shown in Fig. 8, consecutive parsing first decompresses the com- 

plete document into memory and then parses the content with 

multiple parallel parsing threads. Having the complete document 

in memory during parsing has several advantages. First, we do not 

need to use intermediate buffers to store values for later parsing,  

as the document itself serves as a buffer. This reduces costly 

memory operations such as allocations and copies. Addition- 

ally, since decompression is independent of parsing, the choice 

of decompression method is flexible, and we can use libraries 

that are optimized for full-buffer decompression. However, keep- 

ing the entire document in memory during parsing leads to 

inflated memory usage. In cases where the document cannot fit 

in memory, SheetReader uses interleaved parsing instead. 

Once the entire document has been decompressed, we can 

parallelize the parsing by simply splitting the document into 

roughly equal-sized chunks and processing each chunk by a sep- 

arate thread. However, splitting XML documents into multiple 

chunks that can be parsed in parallel is a challenging prob- 

lem [21–23]. In particular, a parser that starts at an arbitrary point  

in the document lacks the context to determine how to process 

the encountered characters. To overcome this problem, we lever- 

age the fact that spreadsheets have a predefined XML structure  

and determine the parsing state by identifying the type of the 

first XML element that we encounter in the chunk. Specifically, 

we scan the chunk for structural characters that denote the start 

or end of an XML tag (e.g., <). We then build additional context 

by determining the type of the corresponding XML element. For 

 

Fig. 9. Interleaved parsing. 

 

 

example, if we encounter the opening tag to a row element, 

we know that we are at the beginning of a new row, while if 

we encounter the closing tag to a cell element, we know that 

afterwards there is either another cell or the end of the row. 

The above approach is possible because the encoding of structural 

characters is different when these characters are not structurally 

significant, e.g., when they are part of an element or an attribute 

value. For example, while < denotes a structural character, the 

same character is encoded as &lt; inside an element or an 

attribute value. 

Our parallel parsing approach also assumes that each cell has 

information about its location (i.e., the row and column num- 

ber), so that individual threads can determine where to insert 

the parsed values in SheetReader’s intermediate data structure. 

Although this information is optional according to the standard, 

the most widely used tool, Microsoft Excel, provides it. If there is 

no location information, we can employ an additional processing 

step, either before or after the parallel parsing. Before parsing, 

we can perform a reduced sequential scan over the document to 

count the rows and cells and calculate the offset for each chunk. 

This sequential scan can be implemented efficiently such that it 

does not significantly affect the runtime. An alternative approach 

is to let each thread insert the parsed values into its own separate 

intermediate data structure. In the last step, i.e., when converting 

to the target, we can then merge the partial data structures by 

sequentially retrieving the values. 

Additionally, we determine the size of the worksheet, i.e., the 

number of rows and columns, from the dimension element in 

the spreadsheet document metadata. If the dimension element 

does not exist, and since we have the entire uncompressed doc- 

ument in memory, we can also determine the size by examining 

the row and column number of the last cell. Predetermining 

the worksheet size allows to pre-allocate the intermediate data 

structure and avoid costly resize operations. Furthermore, it en- 

ables multiple threads to insert values in the data structure 

without any write synchronization mechanism. Being unable to 

pre-allocate the intermediate data structure adds only minor 

complexity. When a column becomes full, we simply need to al- 

locate a larger amount of space and copy over the existing values. 

During the resizing operation, we also need a synchronization 

mechanism (e.g., a lock) that blocks the insertion of new values. 

Overall, each parsing thread of the consecutive approach takes 

as input the starting offset of its chunk and the end offset or the 

total chunk length. Then, it locates the first cell in the chunk as 

discussed previously and proceeds with parsing from there, skip- 

ping over all content before the first cell. This skipped content is 

actually relevant to the last cell of the previous chunk. Therefore, 

to ensure that all elements will be parsed, each thread finishes 

parsing the last cell of the chunk by extending its assigned parsing 

area over the beginning of the following chunk. 
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yet, we make the buffer thread-safe. Specifically, we use an index 

that indicates the element that each thread is currently operat- 

ing on, and ensure that the parsing thread remains at least a 

single element behind the decompression thread. That is, if the 

decompression thread is currently writing into the element with 

index x, the parsing thread can process all elements with up to 

and excluding index x. If the parsing thread reaches this point, it 

simply blocks until the decompression index advances. For sim- 

plicity, the initial state satisfies this requirement by starting the 

decompression thread one element ahead of the parsing thread 

(step 1). To ensure that the parsing thread processes the last 

element, we increment the write index by one when the decom- 

pression thread finishes the current round. The decompression 

thread determines if it is allowed to write to an element by simply 

checking if that element is currently being parsed by the parsing 

thread. This can happen only when the decompression thread has 

filled all available elements and the parsing thread has not freed 
Fig. 10. Concurrency control. 

 
 

5.2. Interleaved parsing 

 

This approach aims to minimize memory usage. To that end, 

it continuously recycles a constant amount of memory so that 

the memory usage is independent of the input document, and in- 

terleaves decompression and parsing. Specifically, as depicted in 

Fig. 9, decompression and parsing occur repeatedly one after the 

other. First, the decompression stage decompresses part of the 

document. Then, the parsing stage processes this part and returns 

the control flow to the decompression stage, waiting for the next 

part to be decompressed. As a result, it is impossible to access ar- 

bitrary parts of the document at any time and the parser is unable 

to backtrack or look ahead very far in the document. This means 

that the parser needs to process any relevant content as soon 

as it encounters it, or store it immediately for later processing. 

Consequently, interleaved parsing imposes more restrictions on 

the employed decompression and parsing techniques compared 

to consecutive parsing. 

To implement a single-threaded version of the interleaved 

approach, we only need a single-element shared memory buffer. 

The decompression stage fills the buffer with decompressed con- 

tent, and the parsing stage parses it. However, to enable paral- 

lelization, we need a buffer with at least two elements. Using 

multiple elements allows to decouple the decompression and 

parsing stages and execute them in parallel by separate threads. 

The decompression thread writes the elements that are available 

for writing, while the parsing thread reads from the written 

elements and subsequently re-enables them for writing. Using a 

two element buffer, the threads can switch their elements only 

when they both finish processing. Since the decompression and 

parsing time are data-dependent, the time that a thread has to 

wait for the other thread to finish can fluctuate significantly. 

To reduce the total wait time and mitigate the resulting unpre- 

dictable runtime, our microbenchmarks showed that it is better 

to use larger buffers. 
Fig. 10 (left) shows how the interleaved approach works with 

a circular buffer using a single parsing thread. The decompression 

and parsing threads iterate through the elements sequentially, 

i.e., the decompression thread writes its results into the first 

element, then the second one, and so on (step 2), while the 

parsing thread reads the elements in the same order (step 3). 

When a thread reaches the last element, it loops back to the first 

one (step 4). 

To prevent the threads from using an invalid element, i.e., the 

decompression thread overwriting an element that is not parsed 

yet or the parsing thread parsing an element that is not written 

any element yet, as shown in step 4. We store the indexes as 

atomic integers, so that all threads see the same value when they 

access an index simultaneously. 

In addition to parallelizing decompression and parsing, we 

also parallelize the parsing stage, i.e., use multiple parsing threads 

as shown in Fig. 10 (right). We explore this avenue since our 

preliminary benchmarks showed that decompression is typically 

faster than parsing. The interleaved approach can be easily ex- 

tended to support parallelism in the parsing stage. Contrary to 

consecutive parsing, the parsing threads do not work with a large 

buffer containing the entire document, but with small buffer 

elements that contain only small parts of the document. As a 

result, the mechanism for distributing the elements among the 

parsing threads is slightly more complex. One solution would 

be to introduce a flag for each element that indicates its state, 

i.e., if the element is ready to be parsed, ready to be written, 

or currently being processed. The threads would then pick an 

element to process based on these flags. Instead, we decided 

to extend our existing index-based synchronization mechanism. 

Specifically, each individual parsing thread has a separate index 

and checks up to which element it is allowed to parse. The 

decompression thread simply checks if any of the parsing threads 

works on the element where it wants to move next. 

One remaining issue is preventing the parsing threads from 

parsing an element multiple times, i.e., uniquely assigning ele- 

ments to parsing threads. This is achieved by initializing their 

indexes in a staggered manner and advancing them by the num- 

ber of parsing threads rather than singular increments as shown 

in Fig. 10 (right). For example, with three parsing threads, the 

first one starts at index 0, advancing to 3 and then 6. The second 

thread starts at index 1 and advances to 4 and then 7. The third 

one starts at index 2 and advances to 5 and then 8. This approach 

guarantees that all elements are fully processed exactly once. 

Since we process the elements in sequential order, we also 

process the document sequentially, which enables using the pars- 

ing ‘‘extension’’ mechanism described for the consecutive ap- 

proach. If a parsing thread reaches the end of its assigned element 

but the last cell has not been fully parsed yet, it simply advances 

into the next element to finish parsing. Afterwards, it readjusts its 

index to prevent overlap with the other threads. This is possible 

because the decompression thread only writes to elements up to 

the last parsing thread, i.e., every element in front of a parsing 

thread up to the decompression thread will always be valid. 

Similarly to the consecutive approach, we exploit the prede- 

fined XML structure to deduct the parse states. However, dealing 

with the lack of location information is harder because the pars- 

ing positions are constantly changing. Each time a parsing thread 

advances, it skips over potentially multiple elements that contain 

the logical continuation of its acquired parse state. As a result, the 
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parsing threads are repeatedly placed in unknown and ambiguous 

parse states. We can adapt both solutions that we discussed for 

the consecutive approach here. Before the actual parsing, each 

parsing thread could perform a fast reduced scan over its assigned 

element to count the number of contained rows and cells, ac- 

counting also for the location information after blank cells. Then, 

all threads would need to share their results to determine the row 

and cell numbers at the beginning of all elements. Afterwards, 

the parsing threads would proceed with the actual processing. 

Alternatively, we could create an intermediate data structure for 

each element rather than for each thread. Finally, if we are unable 

to pre-allocate the intermediate data structure, we can apply 

the same solution of simply synchronizing the write and resize 

operations as in the consecutive approach. 

 

6. Handling missing dimension and location information 

 
Our previously presented parsing approaches assume existing 

dimension and location information, which is commonly present 

in the Excel format (see Section 2). In particular, we rely on di- 

mension information to pre-allocate our intermediate data struc- 

ture, and on location information to identify the location of the 

individual parsed cells across multiple threads without complex 

bookkeeping. Although Excel-generated files contain dimension 

and location information, this is optional. Thus, there is no guar- 

antee that this information will be present in the output of 

other applications. The dimension information is generally not 

necessary and serves only as an optimization technique for pre- 

allocating the sheet data structure since without it one could  

simply use a container that dynamically grows as cells are parsed. 

While the standard does not explicitly specify how to proceed 

when cell location information is missing, Excel places these cells 

directly one after another, i.e. a newly parsed cell is placed in 

the next column after the previously parsed cell, and if it is the 

first cell in a row, it is placed in the first column. A complication 

is that NULL (blank) cells can be omitted from the XML, which 

means that all cells after a blank cell would be erroneously offset  

by 1 column. Therefore, cell location information is required to 

indicate the correct position of a cell (correction values) when one 

or more previous cells were NULL. To handle spreadsheets stored 

in this manner, we propose to adapt our interleaved approach, 

i.e., the intermediate data structure and how we populate it. 

Instead of pre-allocating the intermediate data structure in 

a column-major fashion based on the information provided by 

the dimension elements, we allocate it on-the-fly in a row-major 

fashion. This way, we can still chunk the document and assign 

different threads to different chunks. For each thread, we main- 

tain two lists: One list that stores the actual cell values and their 

corresponding types per chunk, and one list for bookkeeping, 

i.e. for storing location information. The bookkeeping list contains 

a chunk id, a cell index that corresponds to the index of a  

particular cell within a chunk, and the row and column iden- 

tifiers. Each thread populates these two lists for their currently 

processed chunk. We add values to the bookkeeping list only  

when correction values are specified by the spreadsheet and they 

do not match the expected location. 

Once parsing completes, we end up with two lists per thread, 

one containing the chunks with the actual cell values and one 

for the correction values. When converting the intermediate data 

structure into our target, e.g. R or Python dataframes, we process 

the chunks sequentially and place the values accordingly into 

the target data structure. While iterating over the parsed chunks, 

we keep track of the processed cells and perform lookups in the 

bookkeeping list. For example, the first cell corresponds to the 

first row and first column of the target structure, the second 

to the first row and second column, and so forth. If our lookup 

Fig. 11. Excel worksheet XML extract. The highlighted sections are scanned for 

the opening tag of a cell element. 

 
 

returns a correction value for a particular cell, we overwrite 

the current location. For example, after processing five cells, we 

would place the next cell in the sixth column. Now, for this 

particular cell, our lookup in the bookkeeping list returns the 

location of the first row and seventh column. Therefore, we place 

the current cell into the seventh column and leave the sixth 

column empty, indicating a NULL/blank value. We apply this 

method similarly to row correction values, where a special value 

indicates to just increment the row and move to the first column, 

instead of overwriting with a particular value. 

The bookkeeping list can also help determining the number of 

rows when dimension information is missing. Therefore, we need 

to iterate through the bookkeeping list until we find an exact 

value, while keeping track of the encountered row increments.  

 
7. Optimizations for spreadsheets 

 
Aside from parallelization, we employ some further spreadsh- 

eet-specific optimizations to accelerate parsing, thereby further 

reducing the runtime. These optimizations aim to reduce the 

amount of work per input character. Ideally, when a character 

does not provide any relevant information, we do not want to 

perform any work for it. Additionally, we do not want to visit any 

given character, including potential copies of it, more than once. 

Our first optimization consists of parsing element names on- 

the-fly rather than copying characters into a new buffer and 

comparing against the complete string. We achieve this by check- 

ing if the scanned input characters match any of the predefined 

known element names. For example, for row elements, we add 

an integer field to the parsing state that checks if the current 

element name is row. At the start of parsing, we initialize this 

field to 0. If the parser is in the appropriate state and encounters 

an r character, we increment the field. If we encounter an o 
right after, we increment the field once more. We apply the same 

procedure for the w character. If at any point we encounter a 

different character than expected, the field is reset to 0. Upon 

encountering a whitespace character, we simply determine the 

currently parsed element by checking the integer fields of the 

relevant element names. If the field matches the length of the 

checked element name (e.g., 9 for sheetData, 3 for row, 1 for c), 

this means that we just encountered the corresponding element. 

Our second optimization consists of skipping as much un- 

needed content as possible while also determining when to skip 

as quickly as possible. In other words, we aim to determine as 

early as possible the amount of required work for a character and 

then only perform this required work. We can identify opportu- 

nities to apply this optimization by examining the XML schema 

that is given by the specification. Using the Excel format as an 

example, we need to check for the opening tag of a cell element 
(c) only when we have encountered a row (row) opening tag 
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previously and have not encountered a row closing tag since then 

(cf. Fig. 11). This also applies for values (v) inside cells (c), rows 

(row) inside the sheet data (sheetData), and even for locating 
the sheet data element itself. 

Furthermore, we avoid parsing and deserializing attributes 

that do not contain relevant data or metadata for creating the 

target data structure. For example, all row elements in Excel 

worksheets have an attribute that indicates the height of the row. 

Such irrelevant tags and their values should be skipped as early 

as possible. Given the XML format, we achieve this by skipping 

all content between the opening and closing quotation marks of 

the irrelevant attribute value. We note that we assume that the 

input document is a valid XML conforming to the specification. 

Otherwise, if the XML contains invalid values, e.g., if a quotation 

mark is missing, the parser might skip some relevant data. 

To avoid visiting characters more than once, we try to per- 

form parsing in-situ without any intermediate copies. This is 

particularly relevant for the interleaved parsing approach, where 

there are no guarantees regarding which part of the document 

is currently available in memory. For example, the value of the 

row number attribute might be split between buffer elements. 

Since it is impossible to access the first element once we advance 

to the second one, a naive solution would copy the relevant 

portion from each element into another intermediate buffer, so 

that the two parts can be combined and the complete value can 

be deserialized. We avoid such copies, and thus processing the 

same character twice, by deserializing characters as they arrive. 

Deserializing integers in-situ is simple. We first initialize the 

integer value to 0 and then for every read character, we multiply 

the current value by 10 and add to it the deserialized character. 

We can use this approach to deserialize most of the required 

attribute and element values from the worksheet. We can, for 

example, use a virtually identical mechanism for spreadsheet 

form numbers where ‘‘A’’ corresponds to 1 and ‘‘AA’’ to 27. The 

only difference is that we need to multiply by 26 and adjust the 

deserialization of the characters to numbers. Other values such 

as booleans or cell types are also trivial to deserialize without 

copying. However, we cannot apply the above technique to dese- 

rialize floating point values in-situ, as it can potentially introduce 

rounding errors and thus produce erroneous results. Thus, for 

floating point values, we cannot avoid copy buffers. 

Overall, our spreadsheet-specific optimizations improve the 

performance of the low-level parsing routine. As a result, in 

single-threaded execution, the optimizations directly translate 

into lower runtime. In the case of multiple threads, the optimiza- 

tions accelerate the execution of each individual thread. Conse- 

quently, we can use fewer threads, thereby potentially reducing 

synchronization overheads. 

 
8. Evaluation 

 
In this section, we first describe the experimental setup and 

methodology and then present a thorough evaluation of Shee- 

tReader in terms of runtime and memory usage. To demonstrate 

SheetReader’s benefits, we first compare it with existing state-of- 

the-art solutions for spreadsheet parsing and then perform an 

in-depth analysis to study the trade-offs between our proposed 

parsing approaches. Lastly, we evaluate parallel decompression 

to determine its impact on the runtime. 

 

8.1. Experimental setup & methodology 

 

Hardware. The experiments were performed on a machine equipped 

 

Benchmarks. We use various benchmarks to measure the run- 

time and memory usage of our approach and the competing 

ones. Following our prototype, the benchmarks involve loading an 

Excel spreadsheet file into R. As our prototype targets the xlsx for- 

mat introduced in 2007, it is impossible to execute benchmarks 

designed for older format versions. We run every benchmark 

on a new R (or Python) instance to avoid potential residual 

objects in memory from influencing later measurements. While 

the instance is running, we periodically measure its memory 

usage. For the general comparison between the approaches, we 

use the maximum measured memory usage and the total run- 

time. Additionally, we insert logging messages that indicate the 

beginning and end of individual loading stages. This periodic data 

allows us to examine individual benchmarks in detail. That is, 

we associate the separate steps of each approach with particular 

messages and determine the impact of each step on the overall 

memory usage. We repeat each benchmark 5 times and report the 

average. We assume cold system caches, i.e., we clear OS caches 

before re-executing each benchmark. Unless stated otherwise, 

the experiments are run using our prototype in R. 

Datasets. Most of our benchmarks use synthetically generated 

Excel spreadsheets according to specific desired parameters such 

as the percentage of numeric vs. text values or the percentage of 

blank cells. We generate Excel spreadsheet files for various row 

counts where larger spreadsheets are supersets of smaller ones. 

The compressed sizes range from 13.6 MB (10,000 rows), to 413 

MB (300,000 rows), up to 827 MB (600,000 rows). Unless other- 

wise specified, each spreadsheet has 100 columns and contains 

only numeric values, without any blank cells. Furthermore, we 

use two real-world financial spreadsheet files from AccessHolding 

to study the performance of our parser in comparison with the 

state-of-the-art in a real setting. For data protection reasons, we 

anonymized the files before running our benchmarks. The first 

file, loans, has 280,973 rows, 110 columns, and a compressed size 

of 172 MB. The second file, transactions, has 447,241 rows, 84 

columns, and a compressed size of 193 MB. Both files contain a 

mix of different data types, i.e., integers, dates, floats, booleans, 

and text. While the first file has only a few empty cells, the second 

one has significantly more (i.e. 20 columns are almost empty). 

Baselines. We chose to implement our prototype in R and Python 

because of their popularity among data scientists. Hence, we 

experimentally compare SheetReader with existing R and Python 

packages for loading spreadsheets. After analyzing several pack- 

ages for Excel parsing in R, we chose to include the openxlsx 
and readxl packages3 as they showed the best performance 

for lowest memory usage and fastest runtime, respectively. Both 

packages work solely with Excel files and are written in C++. 

Openxlsx employs a hybrid DOM/SAX approach, and extracts 

cell values using regular expressions, while readxl first con- 

structs a DOM tree from the spreadsheet XML using the XML 

DOM parsing library RapidXML and then processes the tree fur- 

ther to extract the cell values. For our experiments in Python, we 

use the openpyxl package, as it is the only method for loading 

spreadsheets that supports xlsx in the popular Pandas library. 

Software configuration. We use the following versions of R, R 

packages, and libraries: R 4.0.3, data.table 1.13.2, openxlsx 
4.2.3, readxl 1.3.1, miniz 2.1.0, libdeflate 1.7, and the fol- 

lowing versions of Python and packages: Python 3.7, openpyxl 
3.0.10. We implemented our prototype in C++ and compiled 

with gcc/g++ 9.3.0. By default, decompression uses 1 thread 

and parsing uses 8 and 2 threads for the consecutive and the 

interleaved approach, respectively. If applicable, shared strings are 

parsed in parallel using one additional thread. In the consecutive 

approach, we determine the buffer size for the decompressed 

with an AMD EPYC 7702P 64-Core CPU, 512 GB RAM, and a   

512 GB SSD, running Ubuntu 20.04 (kernel version 5.4.0–90). 3 https://github.com/ycphs/openxlsx, https://readxl.tidyverse.org/. 

https://github.com/ycphs/openxlsx
https://readxl.tidyverse.org/
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Fig. 12. Performance overview of SheetReader and existing R packages for parsing real-world spreadsheets. 

 

 

Fig. 13. Performance overview of SheetReader and existing R packages for parsing synthetic spreadsheets containing only numeric values. 
 

content from the ZIP metadata. In the interleaved approach, we 

allocate a buffer with 1024 32 KB-sized elements after empirically 

evaluating several configurations. 

 

8.2. Comparative analysis 

 

Comparison using real data. Fig. 12 compares SheetReader’s pars- 

ing approach ( both consecutive and interleaved) with the state- 

of-the-art in terms of runtime and memory usage on the two 

real-world datasets. Furthermore, we parse the strings parallel to 

the worksheet in a single thread that performs both decompres- 
sion and parsing. Using the interleaved approach, SheetReader is 

3.2× faster than readxl, the fastest existing solution, while also 

consuming 26× and 20× less memory for loans and transactions, 
respectively. Compared to the most memory-efficient existing 
solution, openxlsx, SheetReader (interleaved) is 17× faster with 

10.7× less memory consumption for the loans file and 15× 
faster with 8.6× less memory consumption for the transactions 
file. Overall, our results demonstrate that SheetReader provides 

runtime and memory-efficient spreadsheet parsing. 

Scalability with spreadsheet size. Fig. 13 shows the runtime 

and memory usage as we increase the size of our synthetically 

generated spreadsheets. Comparing the runtime performance, 

openxlsx exhibits very long runtimes even for moderately sized 

files, taking more than 2 min for a spreadsheet with 200,000 

rows. Readxl, which is the fastest existing solution for loading 

spreadsheets into R, reaches 65 s for the largest file. Our approach, 
SheetReader, outperforms both baselines by around 2.5 to 3 times 

across all tested worksheet sizes. 

In terms of memory efficiency, SheetReader has a considerable 
lead over the other packages, consuming at most 728 MB for the 
largest file of 600,000 rows. Specifically, SheetReader consumes 

up to 40× and 20× less memory than readxl (29.5 GB) and 

openxlsx (16.3 GB), respectively. 
The excessive memory usage of readxl is caused by its un- 

derlying XML DOM parsing approach. The generated DOM tree 
that is kept in memory for subsequent processing consumes large 

amounts of memory. As a result, the memory usage of readxl 
is consistently over 10 times more than the size of the uncom- 

pressed source worksheet, reaching almost 30 GB for 600,000 
rows. For consumer machines, even worksheets with 200,000 

or 300,000 rows can saturate all available memory (9 GB and 
13.5 GB respectively in this benchmark), which would in turn 

also impact the runtime. That is, the runtime measurements will 
become significantly worse than the ones shown here if we use 

a machine that does not have a sufficient amount of memory. 
The package openxlsx employs an approach that can be 

considered a mix between DOM and SAX parsing. Instead of 
extracting the whole document into a DOM tree, it extracts only 
the significant parts of the document into lists using regular 
expressions. However, it does not directly process the extracted 

values. Specifically, while the extraction of values from the work- 

sheet is done in C++, the lists containing the values are returned 
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Fig. 14. Performance overview of SheetReader in Python compared to openpyxl. 

 

 

 

Fig. 15. Benchmarks of the Consecutive and the Interleaved parsing approaches. 

 

to R. Then, the R wrapper function that wraps the extraction 

processes these values further to build the target Dataframe. 

Overall, while openxlsx uses considerably less memory than 

readxl, its memory usage is still excessive, i.e., around 8 GB for 

300,000 rows and reaching 16 GB for 600,000 rows. 

We repeat the same experiments with our prototype in Python. 
Fig. 14 shows the results (note the log scale on the y-axis). 

SheetReader is up to 47× faster in terms of runtime performance 

and consumes up to ∼ 40× less memory (for 600,000 rows, inter- 
leaved method). The performance improvement can be explained 

by the fact that openpyxl is internally relying on the expat 
library, a general XML parsing library using the SAX approach, and 

thus introduces the previously discussed performance overheads 

of generalized XML parsing. 

 
8.3. SheetReader analysis 

 

Parsing approaches comparison. We introduced two different 

parsing approaches for SheetReader; consecutive and interleaved. 

This benchmark studies the trade-offs between their runtime and 

memory usage. Particularly, it aims to determine the speedup of 

the consecutive over the interleaved approach, and to show how 

the consecutive approach achieves this speedup at the expense of 

an increased memory usage. 

Fig. 15 shows the results when applying both approaches to 

the same synthetic spreadsheets and increasing the spreadsheet 

size. Both approaches exhibit a linear increase in runtime and 

memory usage that is proportional to the size, with the con- 

secutive approach consistently having a better runtime but also 

substantially higher memory usage. In contrast, the increase in 

memory usage of the interleaved approach is negligible. 

In the consecutive approach, the decompression step requires 

two buffers, one for the compressed and one for the decom- 

pressed content. Therefore, the maximum memory usage is effec- 

tively determined by the sum of the sizes of the compressed and 

the decompressed worksheet. The intermediate data structure 

is allocated only after the deallocation of the compressed docu- 

ment (i.e., after decompression), while it is generally considerably 

smaller than the worksheet. As such, it has no impact on the 

maximum memory usage. In contrast, in the interleaved approach, 

since the actual parsing process uses a constant amount of mem- 

ory, any increase of the memory usage over different worksheet 

sizes is caused by the intermediate data structure, whose size 

depends on the input worksheet. 
Furthermore, the benchmark shows that while the runtime 

rises linearly for both approaches, the increase for the interleaved 

approach is stronger than for the consecutive one, culminating in 

a difference of around 8 s for 600,000 rows. 

Our benchmark confirms the advantages and disadvantages 

of both parsing approaches discussed in Section 4. Additionally, 

based on the experimental results, we propose using the inter- 

leaved approach as the ‘‘safe default’’ option because it loads the 

spreadsheet data in an acceptable amount of time while only 

rarely consuming more memory than the one that is already 

required by the target environment to store the same data. Users 
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Fig. 16.  Benchmarks for the interleaved approach adaption that handles missing dimension and location information. 

 

 

 

Fig. 17. Benchmarks of parsing the shared strings sequentially or parallel to the worksheet. 
 

can choose the consecutive approach if they require faster loading 

times and have a machine with a sufficient amount of memory. 

Missing dimension and location information. As discussed in 

Section 6, to deal with missing dimension and location infor- 

mation we need to adapt our parsing method. To evaluate the 

introduced overhead, we benchmark the two approaches using 

the numeric dataset. Fig. 16 shows that the adapted interleaved 

approach, indicated by SheetReader (row-wise) is on par with 

the default interleaved approach, with regard to runtime per- 
formance. However, with regard to memory, we observe that 

SheetReader (row-wise) performs up to 2× worse, occupying 

approximately more than 1 GB of memory. This is because during 

the construction of the target (R dataframe), we cannot free our 
columns in the intermediate data structure after their transfor- 

mation to the target, as we need to iterate row by row through 
the row-based intermediate data structure. 

Parallelizing worksheet and shared strings parsing. Apart from 

the parsing approach choice, in the case of spreadsheet systems 

that store strings separately from the worksheet, e.g. Excel, we 

can also choose between parsing sequentially or in parallel. To 

compare the performance of these two approaches, we generate 

synthetic spreadsheets for various row counts that contain a mix 

of different data types. Specifically, the synthetically generated 

mixed-type spreadsheets have 40 columns of floating point val- 

ues, 30 columns of integer values, 20 columns of text with 25% 

unique values, and 10 columns of text with 75% unique values. 

As expected, Fig. 17 shows that parsing the shared strings 

and the worksheet in parallel yields runtime improvements. The 

interleaved parsing approach benefits the most from this paral- 

lelization, reaching a runtime reduction of around 30%. However, 

contrary to our expectations, the parallel approach has a lower 

memory usage than the sequential one for almost all benchmarks. 

To determine the cause of this, next we examine the memory 

characteristics of the benchmarks in more detail. 

Memory usage analysis. Fig. 18 shows a detailed memory pro- 

file of the sequential and parallel approaches when parsing the 

largest document (600,000 rows) from our previous experiment 

using the consecutive approach. To identify when and where the 

maximum memory usage occurred, we measure it periodically 

and associate different time spans with different steps in the 

parsing process. The green decompress and red parsing sec- 

tions correspond to worksheet parsing, while the yellow shared_ 
strings section combines both steps in the shared strings pars- 

ing process. In the parallel benchmark, the yellow section depicts 

the extra time taken by shared strings parsing. While worksheet 

parsing finishes at around 15 s, shared strings parsing takes over 

10 extra seconds to finish, delaying the dataframe construction. 

Both benchmarks show that parsing the shared strings table 

is two to three times slower than parsing the worksheet. The 

runtime difference can be explained by the inability to parallelize 

the parsing process for the shared strings table, while the work- 

sheet is distributed among 8 threads. Furthermore, the memory 
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Fig. 18. Memory measurements of the sequential and the parallel approach (consecutive parsing). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
 

usage increases steadily during the parsing of the shared strings 

table. This increase in memory usage stems from allocating space 

to copy the strings out of the original document, so that we can 

return them to the user after the deallocation of the document. 

The reason why parsing the worksheet and shared strings 

table in parallel has a lower memory usage than doing so se- 

quentially is a combination of three factors: the dynamic string 

allocations, the long runtime of shared strings parsing compared  

to worksheet parsing, and the order of the two parsing steps in 

the sequential approach. The sequential approach processes all 

shared strings and allocates space for them before decompress- 

ing the worksheet, which represents a constant base memory  

usage for all subsequent steps, including any processing of the 

worksheet where shared strings are not required. As a result, the 

maximum memory usage is reached when the worksheet is de- 

compressed, since the copied strings occupy additional memory 

on top of the decompressed content. In the parallel approach, 

since the shared strings parsing step is slow, by the time all 

strings are copied, the worksheet is fully parsed and the source 

document has been deallocated. 

We conclude that for the sequential approach, the parsing of 

the shared strings table should occur after the worksheet parsing 

to reduce the maximum memory usage. Parsing the strings after 

the worksheet has the additional benefit of allowing to filter out 

unneeded strings, i.e., strings that do not occur in the specified 

sheet. Swapping the order of the parsing steps in our prototype 

is straightforward, as these steps are independent. 

Impact of thread count. To evaluate the effectiveness of our 

parallelization efforts, we measure the impact of the number of 

used threads on the runtime for both the consecutive and the in- 

terleaved approach. Fig. 19 shows that the benefits decrease as we 

increase the thread count in both parsing approaches. Particularly 

for the interleaved approach, any noticeable runtime improve- 

ment (5 to 10%) stops at only two parsing threads, while the 

runtime actually increases with more than two threads. Further 

analysis when running the benchmarks reveals that the decom- 

pression thread becomes the limiting factor at this point, so that 

any additional parsing threads only introduce more synchroniza- 

tion overhead. Regardless of the number of parsing threads, the 

decompression is too slow and results in idle threads waiting for 

a new available buffer element. Thus, the only way to further 

reduce the runtime is accelerating the decompression. 

runtime by almost half (20 to 12 s for 600,000 rows), while the 
increase from 8 to 16 threads only has a marginal impact (12 
to 10.5 s). We are again effectively limited by the speed of the 
decompression step. Since this approach performs parsing after 

the completion of the decompression, the slow decompression 
component imposes the lower limit for the runtime. 

8.4. Parallel decompression 

Since decompression is a runtime bottleneck, we performed 
an experiment to determine the advantage that we can get from 
parallelizing it. To that end, and since the current compression 
used by the OOXML and ODF formats does not support parallel 
decompression, we extracted the worksheet XML files from the 

Excel files and re-compressed them with a modified Deflate al- 

gorithm based on the MiGz library.4 Furthermore, we established 
boundaries in the Deflate stream after which there are no back- 
references to previous blocks and stored the offsets of these 
boundaries in the file metadata. The result is a valid Deflate 
stream that can be decompressed with any existing library. A 

decompression algorithm can now start full decompression of 
the stream from any of the boundaries without requiring to 
first fully decompress the previous blocks in the stream. There- 
fore, we can parallelize the decompression of a single document. 
Specifically, in our implementation we assign separate threads to 
equally spaced boundaries. Each thread performs decompression 
and parsing in an interleaved manner (i.e., using our interleaved 
approach) until it reaches the next boundary. 

Fig. 20 compares the consecutive approach without parallel 

decompression with the interleaved approach that parallelizes the 
decompression using our MiGz-derived algorithm when increas- 
ing the thread count. We see that the parallel decompression 
implementation outperforms the consecutive approach when us- 
ing more than 2 threads, especially for larger files. In most cases, 
using only 4 threads, the parallel decompression implementation 
achieves the same runtime as the consecutive approach with 16 
threads. In turn, 16 threads enable the MiGz-derived algorithm to 
lower the runtime by an additional 35%. Furthermore, increasing 

the number of threads has a larger effect on the runtime for 
the fully parallel implementation. Finally, we note that since 
the individual threads employ the interleaved parsing approach, 
the memory usage is significantly lower than the one of the 
consecutive approach. Therefore, parallel decompression allows us 
to further reduce the runtime while retaining low memory usage. 

The consecutive approach exhibits a more gradual runtime   

reduction, with the increase from 1 to 8 threads reducing the 4 https://github.com/linkedin/migz. 

https://github.com/linkedin/migz
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8.5. Summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 20. Impact of parallel decompression. 

Fig. 19. Impact of the number of threads. 

 
focusing on spreadsheet parsing; current approaches rely on gen- 

eralized XML parsing. Therefore, we review techniques proposed 

for efficient parsing of XML and other text-based formats. 

XML parser parallelization. Parallelizing XML parsing is a non- 

trivial task [25]. As the XML format is self-describing, the diffi- 

culty lies in splitting an XML document into chunks that can be 

parsed in parallel. One line of work proposes a two-pass approach 

to build an XML skeleton structure, which allows to split the 

document before parsing and merge the individual results effi- 

ciently [21,22]. Follow-up work proposes to also parallelize the 

first pass by letting multiple threads create multiple skeletons 

for each chunk, and then merging them into one [23]. Another 

line of work shows that producing chunks with an arbitrary 

number of start and end XML tags and then merging partial 

results, offers better scalability than the two-step approach on 

multicore systems [26]. Furthermore, leveraging SIMD (single- 

instruction multiple-data) instructions of modern CPUs, allows to 

parallelize character scanning and to avoid cache misses, condi- 

tional branches and branch mispredictions, thereby further min- 

imizing the parsing runtime [27]. Both lines of work are comple- 

mentary to SheetReader, as they can be employed to better split 

Our experimental comparison with the existing solutions sho- 
ws the efficiency of our proposed spreasheet parsing architecture. 
Overall, SheetReader with interleaved parsing loads spreadsheet 

files 2× to 3× faster than the fastest existing solution while 

consuming up to 20× less memory than the most memory- 
efficient existing solution. As such, our parser can process large 

spreadsheets on current consumer machines without requiring an 

excessive amount of resources and degrading the user experience. 

SheetReader offers an alternative consecutive parsing approach 

which reduces the runtime by an additional 40% but also in- 

creases the memory usage by more than 4 times. Furthermore, 

parsing the shared strings and the worksheet in parallel re- 

duces the runtime by 15% and 30% when using consecutive and 

interleaved parsing, respectively. Parallelizing the parsing pro- 

cess itself grants the consecutive parsing approach a 20% to 30% 

runtime reduction when using 4 threads, while having only neg- 

ligible impact on the interleaved approach. Finally, we show that 

we could achieve significant additional performance improve- 

ments by parallelizing the decompression, which is unfortunately 
not supported by the current specification of OOXML and ODF. 

 

9. Related work 

 
While there is some work on extracting specific content from 

spreadsheets, e.g., tables [24], there is no related work directly 

the XML and parallelize character scanning at a lower level. 

XML parser compilers. An approach to accelerate the parsing 

procedure is to specialize the parser to a given schema. Parser 

compilers generate parsers based on predefined schemata. XML 

Screamer [15] compiles specialized parsers that merge parsing 

and deserialization to avoid expensive data copying and trans- 

formation operations. Chiu and Lu [14] propose an intermediate 

representation with a generalized automata approach, through 

which they generate efficient parsers. Although schema-based 

specialization leads to better performance, it does not directly ex- 

ploit spreadsheet-specific properties to further optimize parsing. 

Parsing text-based formats. Parsing widespread text-based for- 

mats, e.g., CSV and JSON, is similarly challenging as parsing 

XML. There has been extensive work on improving the perfor- 

mance of CSV parsing, e.g., by employing speculative parsing 

techniques [28], by optimizing the parsing process for multicore 

CPUs [29], and by employing GPUs for parallelization [30,31]. 

In-situ data processing approaches also employ several opti- 

mizations, such as selective parsing and just-in-time compila- 

tion [32]. Furthermore, multi-hypothesis CSV parsing addresses 

the challenge of validating files with unknown schemata [33]. 

The JSON format shares more similarities with the XML for- 

mat, as they are both self-describing. Several approaches have 

been proposed to improve the performance of JSON parsing. 

For example, Sparser [34] employs raw filtering through SIMD 
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instructions before parsing, while Mison [35] speculatively pre- 

dicts the physical location of necessary fields through structural 

indices. Moreover, simdjson [36] proposes to limit the set of 

employed instructions to increase the parsing and validation per- 

formance of JSON documents on commodity CPUs. We see these 

lines of work as orthogonal to ours, as they can be applied in the 

context of SheetReader to further increase performance. 

 

10. Conclusions 

 
Spreadsheet systems are popular for accessible data anal- 

ysis but have limited capabilities when it comes to data sci- 

ence applications. Existing solutions for loading spreadsheets into 

data science environments to perform advanced analytics ex- 

hibit critical performance problems in terms of either runtime 

or memory usage. To address these problems, this paper intro- 

duces SheetReader, a specialized spreadsheet parsing architec- 

ture that operates in two different parsing modes, consecutive 

and interleaved. To improve the runtime, SheetReader paral- 

lelizes the parsing by exploiting the flat and repeating structures 

inherently found in spreadsheet formats. It further uses task 

parallelism to process worksheets and strings of the spreadsheet 

concurrently. To reduce the memory utilization, SheetReader 
tightly couples decompression and parsing. To provide a general 

solution for different target environments, it stores the retrieved 

spreadsheet values in an environment-agnostic intermediate data 

structure. That way, it is easy to create bindings for different 

targets without the modifying the core parser. 

Our evaluation showed that SheetReader is highly efficient 

in terms of both runtime and memory usage. The consecutive 

approach offers a significant improvement in runtime and a mod- 

erate reduction in memory usage, while the interleaved approach 

yields a more moderate runtime improvement but has very low 

memory consumption. Since decompression creates a bottleneck, 

we also introduced and evaluated a method for parallel decom- 

pression, showing that with fully data-parallel processing we can 

further reduce the runtime while keeping the memory usage low. 

In future work, we plan to investigate the applicability of 

existing solutions that partially parallelize the decompression 

of general Deflate streams, such as pugz [37]. Furthermore, we 

plan to incorporate SheetReader as a DBMS spreadsheet wrapper, 

similar to SCANRAW [38], to allow querying spreadsheets in 

cross-database environments [39]. 
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