
Analysis of Geospatial Data Loading
Aske Wachs

IT University of Copenhagen
Denmark

askw@itu.dk

Eleni Tzirita Zacharatou
IT University of Copenhagen

Denmark
elza@itu.dk

ABSTRACT
The rate at which applications gather geospatial data today has
turned data loading into a critical component of data analysis
pipelines. However, users are confronted with multiple file formats
for storing geospatial data and an array of systems for process-
ing it. To shed light on how the choice of file format and system
affects performance, this paper explores the performance of load-
ing geospatial data stored in diverse file formats using different li-
braries. It aims to study the impact of different file formats, compare
loading throughput across spatial libraries, and examine the micro-
architectural behavior of geospatial data loading. Our findings show
that GeoParquet files provide the highest loading throughput across
all benchmarked libraries. Furthermore, we note that the more spa-
tial features per byte a file format can store, the higher the data
loading throughput. Our micro-architectural analysis reveals high
instructions per cycle (IPC) during spatial data loading for most
libraries and formats. Additionally, our experiments show that in-
struction misses dominate L1 cache misses, except for GeoParquet
files, where data misses take over.

CCS CONCEPTS
• Information systems→ Database performance evaluation;
Geographic information systems.

KEYWORDS
spatial libraries, benchmarking, micro-architectural analysis

ACM Reference Format:
Aske Wachs and Eleni Tzirita Zacharatou. 2024. Analysis of Geospatial Data
Loading. In International Workshop on Testing Database Systems (DBTest
’24), June 9, 2024, Santiago, AA, Chile. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3662165.3662761

1 INTRODUCTION
Applications in both science and industry accumulate geospatial
data at an unprecedented rate from a plethora of sources such as
GPS-enabled devices (e.g., cell phones, cars, and sensors), scien-
tific simulations [31], consumer-based applications (e.g., Uber), and
social media platforms (e.g., location-tagged posts on Facebook,
X, and Instagram). To meet increasing application demands, there
is a considerable amount of research on improving spatial data
processing [1, 19, 27, 29, 30, 32].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DBTest ’24, June 9, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0669-1/24/06
https://doi.org/10.1145/3662165.3662761

Geospatial data is captured in various file formats, such as Shape-
file and GeoParquet [10]. Remarkably, OGR [8], one of the most
widely used spatial data libraries, supports 83 spatial vector file
formats. Extracting value from large amounts of data effectively
requires loading it into a data processing or GIS system. However,
the landscape of spatial systems and libraries is very diverse, with
each tool supporting only a subset of existing spatial file formats
and exhibiting varying data loading efficiency. This plethora of dif-
ferent tools and file formats poses challenges in choosing the best
tool for a specific format. However, this choice is crucial as loading
large amounts of data can easily become an analysis bottleneck.

Geospatial data analytics have been extensively benchmarked
both in literature and anecdotally [6, 11, 14, 17, 18, 21, 35]. However,
no benchmarks focus on data loading performance and the impact
of the file format. Existing spatial benchmarks focus on the perfor-
mance of specific operations, for example, spatial joins [6, 17, 18],
topological relations, such as intersections, overlaps, or crossing
features [14, 21], and exploratory analytics workloads [35]. Fur-
thermore, a recent anecdotal blogpost presents a performance ex-
ploration of writing vector data with different file formats and
libraries [11]. A prior data loading performance study focuses on
relational databases [4] and does not consider spatial data and sys-
tems. Finally, existing micro-architectural studies do not consider
spatial workloads either [22, 24, 25, 28]. They range from investigat-
ing the behavior of online transaction processing (OLTP) [25, 28], to
online analytical processing (OLAP) [24] and graph [22] workloads.

This paper presents a comprehensive analysis of geospatial data
loading with the following goals: 1) analyze how different file for-
mats impact data loading, 2) compare the loading throughput of
different spatial libraries, 3) understand the stress that geospatial
data loading imposes on processor and caches across different file
formats and libraries, and 4) provide insights to data scientists for
optimizing their pipeline and avoiding loading bottlenecks.

The results of our analysis reveal the following:
• GeoParquet is the fastest file format for reading across all

libraries that we benchmarked. Furthermore, DuckDB’s [20]
native GeoParquet reader achieves the highest loading through-
put and can exploit parallelism.

• Data density, measured by the number of features stored
per byte, correlates with loading throughput: denser files
are loaded faster. However, this correlation no longer holds
when loading in parallel with DuckDB.

• Examining the micro-architectural behavior of spatial data
loading, we observe that it exhibits high instructions per
cycle (IPC). Furthermore, instruction misses constitute the
majority of misses in the L1 cache, except for GeoParquet
files where data misses dominate.

The rest of the paper is organized as follows. Section 2 describes
our experimental setup and methodology. Section 3 presents an

https://orcid.org/0000-0001-8873-5455
https://doi.org/10.1145/3662165.3662761
https://doi.org/10.1145/3662165.3662761

DBTest ’24, June 9, 2024, Santiago, AA, Chile Aske Wachs and Eleni Tzirita Zacharatou

experimental comparison of different spatial file formats and load-
ing approaches. Section 4 presents a micro-architectural analysis
of spatial data loading in DuckDB. Sections 5 and 6, respectively,
present a micro-architectural analysis of loading CSV and GeoPar-
quet files using four different loading approaches. Finally, Section 7
concludes the paper and discusses future work.

2 SETUP AND METHODOLOGY
The goal of our experimental study is to investigate the impact of
GIS library and file format on spatial data loading. We executed the
experiments presented in this paper on real hardware and measured
the performance using perf event counters. The rest of this section
details the setup and methodology for our study.

Hardware.We used a desktop system for our experiments. Table
1 lists the system characteristics.

CPU name Ryzen 5 5600G
CPU clock speed 3.9-4.650 GHz
Cores (threads/core) 6 (2)
CPU architecture AMD Zen 3
Sockets 1
Cache line size 64 bytes
L1 data cache 32 KB per core
L1 instruction cache 32 KB per core
L2 unified cache size 512 KB per core
L3 unified cache size 16 MB shared
L1 data TLB entries 64 per core
L1 instruction TLB entries 64 per core
L2 data TLB entries 2048 per core
L2 instruction TLB entries 512 per core
RAM capacity 32 GB
Page Size 4 KB
Operating System Ubuntu Server 22.04.3 LTS

Table 1: System Properties.

Analyzed File Formats.We analyze four widely-supported spa-
tial file formats: Shapefile [5], GeoJSON [2], CSV [23], and GeoP-
arquet [3]. Shapefile is a multi-file format including a main file
storing geometric data, as well as index, attribute, and projection
files. GeoJSON is a text-based row-major format that represents
geographic features and their associated properties using JSON syn-
tax. CSV files, despite their simplicity, are often used to store spatial
data. Lastly, GeoParquet is a columnar binary format that enhances
Parquet by specifying how to encode geometries in the geometry
column and incorporating spatial metadata such as Coordinate
Reference System (CRS) information.

Analyzed Libraries. We analyze three different GIS libraries:
DuckDB [20], GeoPandas [12], and OGR [8]. DuckDB is a state-
of-the-art analytical database that recently launched a spatial ex-
tension [7]. GeoPandas is an extension of the popular Pandas li-
brary [15]. Both GeoPandas and DuckDB use OGR under the hood
to load some of the analyzed file formats. Therefore, by includ-
ing OGR in our evaluation, we aim to investigate the impact of
0AMD’s specified clock speed for the CPU is 4.4 GHz but the CPU is overclocked to
4.65 GHz on this system.

hooking into it for data loading. DuckDB was built by cloning
the DuckDB Spatial repository at commit afd6452 on the main
branch. For its OGR-backed data loading table function (st_read),
DuckDB uses GDAL 3.6.3 in this commit. As of the latest DuckDB
release (v0.10.0), the GDAL version has been upgraded to 3.8.0.
DuckDB uses st_read to load Shapefiles and GeoJSON. However,
for CSV and GeoParquet files, we use DuckDB’s native readers and
then convert geometric feature data into DuckDB’s geometry types
using a scalar function provided by DuckDB’s spatial extension.
GeoPandas is version 0.14.0, with Pandas [15] 1.4.0, Pyproj [34]
3.3.0, Shapely [9] 1.8.0 and Pyogrio [33] 0.7.2. OGR was built from
the source with GeoParquet support by cloning the GDAL repos-
itory at commit 2cfeb1a on the master branch. This commit has
been integrated into releases since version 3.8.0.

Concurrency. OGR and GeoPandas do not inherently support
parallel loading, except when loading GeoParquet files. In contrast,
DuckDB offers parallel loading for all file formats. Therefore, we
evaluate two versions of DuckDB: a single-threaded version and a
multi-threaded version utilizing all 12 hardware threads available.
For GeoParquet, OGR and GeoPandas default to using a maximum
of 4 and 6 (i.e., the number of available cores) threads, respectively.

Datasets. We generated synthetic spatial vector datasets using
SpiderWeb [13]. Specifically, we generated four polygon datasets
of increasing size (containing 1, 2, 4, and 8 million polygons) using
a Gaussian distribution for both G and ~ coordinates. We fixed the
seed for random number generation to 5 and the maximum number
of line segments per polygon to 10. Finally, we use the default affine
matrix, generating coordinates where 0 ≤ G,~ ≤ 1. SpiderWeb
saves the generated data in a GeoJSON file, which we subsequently
converted to Shapefile, CSV, and GeoParquet formats using the
ogr2ogr tool [8]. GeoParquet files are compressed using the default
Snappy compression provided by the ogr2ogr tool. Table 2 presents
an overview of the synthetic datasets used in our study. We note
that GeoParquet files, being compressed, have the smallest size
among the formats. In contrast, the verbosity and redundancy of
GeoJSON syntax contribute to its larger file size. CSV files are over
2G larger than GeoParquet, while Shapefiles are slightly less than
2G the size of GeoParquet.

Furthermore, we use a real dataset fromOpenStreetMap (OSM) [16]
that corresponds to the map of Denmark and contains 6,799,943
features of different geometries.

Metrics.Themetrics used in this study are data loading through-
put (# of features per time unit), instructions per cycle (IPC), and
data and instruction misses. To ease the understanding of our re-
sults, here we provide some background information on out-of-
order processors.

Out-of-order processors have twomain building blocks: frontend
and backend. The frontend is responsible for handling the initial
stages of instruction processing. Its key functions include fetching,
decoding, and issuing instructions. The instructions are fetched
from the memory hierarchy. Ideally, the next instructions to be
executed should be found in the L1 instruction cache, which is
the closest to the core. If a miss occurs, instructions need to be
fetched from higher levels in the memory hierarchy, incurring
higher latency and stalling the instruction pipeline. Preventing
stalls in the frontend is crucial, since they unavoidably lead to
underutilization of the backend too, decreasing the IPC.

https://www.amd.com/en/products/apu/amd-ryzen-5-5600g

Analysis of Geospatial Data Loading DBTest ’24, June 9, 2024, Santiago, AA, Chile

of polygons Total # of points Avg. # of points/polygon Size (GeoJSON) Size (Shapefile) Size (CSV) Size (GeoParquet)
1,000,000 8,004,343 8.004 410MB 202MB 295MB 122MB
2,000,000 16,002,087 8.001 820MB 404MB 591MB 244MB
4,000,000 32,004,894 8.001 1.7GB 808MB 1.2GB 488MB
8,000,000 64,004,157 8.001 3.3GB 1.6GB 2.4GB 975MB

Table 2: Synthetic Data Statistics

Figure 1: Throughput (synthetic dataset, 8M polygons)

The backend executes the micro-operations (µOps) issued by the
frontend. Micro-operations are registered in reservation stations,
which track the operands and dependencies for each µOp. The
backend includes various execution units that perform the actual
operation specified by the µOps. These units can operate in parallel,
allowingmultiple instructions to be executed simultaneously, unless
there are dependencies between them. Furthermore, the backend
buffers outstanding data load and store requests, minimizing stall
time caused by memory misses and improving overall efficiency.
Once all operands are available, the µOp is executed and retired.

We measure the instructions per cycle (IPC) during data loading.
AMD Zen 3 processors can retire four instructions per cycle, i.e.,
the maximum achievable IPC is four. Since instruction and data
cache misses are primary sources of stalls, effectively reducing the
IPC, we also measure the number of misses per 1K instructions
(MPKI) in the L1 cache and the L1 TLB.

Measurements. We use the perf stat tool to collect perfor-
mance counter statistics. We first copy the files from disk to main
memory using /dev/shm. This prevents disk I/O bottlenecks from
impacting the results. For each GIS library, we developed a Python
script that takes a file path as an argument and loads the specified
in-memory data file using the respective library. Additionally, we
created a benchmark harness that invokes these Python scripts
using the subprocess module and profiles them end-to-end with
perf. Running this harness profiles all libraries for all file formats.
The reported results are an average of 10 executions.

3 COMPARATIVE ANALYSIS
Figure 1 plots the throughput measured as the number of features
(polygons) loaded per millisecond for the largest synthetic dataset
(8 million polygons). DuckDB-mt excels at loading GeoParquet,

Figure 2: Throughput (real OSM dataset)

outperforming OGR by 12G and GeoPandas by 9G . Even when
restricting DuckDB to one thread (DuckDB-st), it achieves a 6G
and 5G higher throughput than OGR and GeoPandas, respectively.
GeoPandas and OGR exhibit their highest throughput for GeoPar-
quet compared to other formats at 935.7 and 696.1 features/msec,
respectively. Overall, GeoParquet stands out as the most efficient
file format in terms of reading throughput. This can be attributed
to storing data more densely in the form of Well-Known Binary
(WKB) [26] and having a smaller file size thanks to the applied
compression, as shown in Table 2. Furthermore, all libraries sup-
port some amount of parallelism when loading GeoParquet files, as
explained in Section 2.

In themulti-threaded configuration, DuckDB’s native CSV reader
outperforms OGR and GeoPandas by factors of 6G and 11G , respec-
tively, while in the single-threaded setup, it achieves a slightly
higher throughput than OGR and is around 2G faster than GeoPan-
das.When loadingGeoJSON, all libraries demonstrate a low through-
put, below 100 features/msec. This is mainly attributed to the sub-
stantial file size of GeoJSON (cf. Table 2) and the intensive string
parsing involved in the loading process.

OGR takes the lead for GeoJSON and Shapefile. This is expected,
given that all other libraries use OGR to load these file formats, as
explained in Section 2. Moreover, we observe that when employing
DuckDB’s st_read function for Shapefiles and GeoJSON, there is
a decrease in throughput with multi-threading. This might happen
because st_read does not process data fast enough to feed all
threads, causing threads to be suspended until new data arrives and
resulting in frequent context switches.

Figure 2 plots the throughput for the real OSM dataset, demon-
strating that the results align with the trends observed in Figure 1.

DBTest ’24, June 9, 2024, Santiago, AA, Chile Aske Wachs and Eleni Tzirita Zacharatou

Figure 3: Instructions committed per cycle when loading
different file formats and file sizes with DuckDB-st.

Overall, our experiments highlight that the choice of both library
and file format can significantly impact the loading performance.
Specifically, the throughput difference between the fastest (GeoPar-
quet) and the slowest (GeoJSON) format in DuckDB exceeds two
orders of magnitude. Additionally, loading GeoParquet in parallel
in DuckDB is over one order of magnitude faster than in OGR.

4 DUCKDB ANALYSIS
We conduct a micro-architectural analysis of DuckDB using syn-
thetic data to gain a deeper insight into its loading performance
across different file formats. To avoid thread interference, here we
focus on the single-threaded version of DuckDB. The next sections
extend our analysis to include multi-threaded DuckDB.

4.1 Instruction-level Parallelism
We analyze the number of instructions per cycle (IPC) in Figure 3.
We observe that for both CSV and GeoJSON, the IPC is consistently
high, above 3, which indicates that there are not many dependencies
between µOps. GeoParquet exhibits a slightly lower IPC, ranging
from 2.2 for 1M polygons to 2.42 for 8M polygons. Finally, Shape-
file loading incurs the lowest IPC, albeit remaining above 1. This
lower IPC could be a result of dependencies between instructions
when loading the Shapefile that the out-of-order execution cannot
efficiently resolve. These dependencies could be caused by the more
complex, multi-file structure of Shapefiles, as explained in Section 2.

4.2 Data and Instruction Misses
Figure 4 shows the misses per k-instructions (MPKI) in the L1 cache
on the left-hand side and in the L1 TLB on the right-hand side.
We categorize misses as L1 instruction cache misses (L1i), L1 data
cache misses (L1d), L1 instruction TLB misses (L1 iTLB), and L1
data TLB misses (L1 dTLB). We observe that L1 instruction cache
misses dominate the total number of misses regardless of the file
size for all file formats except GeoParquet. This is not surprising
given that we are loading the entire file from start to end, so all
the parts of the cache lines brought from a file page are accessed,
leading to lower data MPKI. CSV exhibits the lowest values of MPKI
compared to other formats (around 6), followed by GeoJSON with

around 11 MPKI, and GeoParquet with 14-17 MPKI. In contrast,
Shapefile has the highest MPKI with around 56 MPKI. This may be
attributed to the complex multi-file structure of Shapefile, leading
to a larger instruction footprint.

In the case of GeoParquet, L1 data cache misses dominate the
total misses. The reduced number of instruction misses can be at-
tributed to the vectorized data loading of GeoParquet files, which
increases instruction-level parallelism. Additionally, we observe a
slight decrease in the number of instruction misses with larger file
sizes. This is because as the data loading instructions are iteratively
executed over more data, the impact of instructions outside the
loading function decreases. In other words, the overhead of startup
and shutdown instructions gets amortized. This observation aligns
with prior micro-architectural studies [25]. Finally, the higher num-
ber of L1 data cache misses might result from the dictionary used
for Snappy decompression exceeding the L1 cache capacity.

In the L1 TLB, data misses dominate the total number of misses
for GeoJSON and GeoParquet, while instruction misses dominate
for CSV. Shapefile experiences a roughly equal distribution ofmisses
between data and instruction. Similarly to the L1 cache misses, CSV
incurs the lowest number of MPKI, while Shapefile exhibits the
highest, with GeoJSON now incurring more misses than GeoPar-
quet. The file size seems to have a small impact on GeoParquet and
Shapefile, leading to a decrease in data misses for the former and
an increase for the latter.

5 CSV LOADING ANALYSIS
Our next round of experiments focuses on the CSV loading perfor-
mance across different libraries using synthetic data.

5.1 Instruction-level Parallelism
We analyze the number of instructions per cycle (IPC) in Figure 5a.
DuckDB-st consistently maintains the highest IPC for all file sizes.
This highlights the resource efficiency of DuckDB’s native CSV
reader, which is also reflected in the achieved throughput, as shown
in Figure 1. We also note that the IPC decreases in multi-threaded
DuckDB. This can be attributed to Simultaneous Multi-Threading
(SMT) used by AMD Zen 3 processors, where two threads share the
resources of a single core. Consequently, the concurrent execution
of multiple threads may lead to resource contention, causing more
stalls and ultimately reducing the IPC. Finally, all libraries except
DuckDB-mt show an increase in the IPC as the file size increases.
This implies that larger file sizes provide more opportunities for
instruction-level parallelism.

5.2 Data and Instruction Misses
Figure 6 shows the misses per k-instructions in the L1 cache (left-
hand side) and L1 TLB (right-hand side), categorized into instruction
and data misses. We observe that instruction misses consistently
dominate data misses in the L1 cache across all libraries and file
sizes. The low data MPKI values can be attributed to the sequential
loading of entire files, ensuring access to all parts of the cache lines
fetched from a file page. While DuckDB (both single- and multi-
threaded) maintains low MPKI values, GeoPandas and OGR suffer
from a higher number of misses when loading CSV files.

Analysis of Geospatial Data Loading DBTest ’24, June 9, 2024, Santiago, AA, Chile

(a) L1 cache (b) L1 TLB

Figure 4: Effect of file format and file size on MPKI when loading data with DuckDB-st.

(a) CSV Loading (b) GeoParquet Loading

Figure 5: Instructions committed per cycle when loading files of varying sizes with different libraries.

(a) L1 cache (b) L1 TLB

Figure 6: Effect of library and file size on MPKI for CSV loading.

In the TLB, DuckDB once again experiences more instruction
than data misses and has the lowest MPKI values. Additionally,
DuckDB-mt exhibits a higher miss rate than DuckDB-st, which can

be attributed to potential TLB pollution by multiple threads. Finally,
in GeoPandas and OGR, TLB misses are nearly evenly divided
between instruction and data, with GeoPandas having a higher

DBTest ’24, June 9, 2024, Santiago, AA, Chile Aske Wachs and Eleni Tzirita Zacharatou

(a) L1 cache (b) L1 TLB

Figure 7: Effect of library and file size on MPKI for GeoParquet loading.

number of instruction misses. The higher instruction miss rate in
GeoPandas can be explained by the fact that it executes a larger
number of instructions than other libraries.

6 GEOPARQUET LOADING ANALYSIS
The last round of experiments focuses on the performance of loading
GeoParquet files with different libraries using synthetic data.

6.1 Instruction-level Parallelism
We analyze the number of instructions per cycle (IPC) in Figure 5b.
We observe that all libraries exhibit lower IPC values for GeoPar-
quet loading compared to CSV loading. While DuckDB-st has the
highest IPC for all file sizes, DuckDB-mt experiences a significant
drop in the IPC. As discussed before, this drop could be attributed to
the resource contention caused by SMT. This low IPC could explain
why parallelizing parsing and loading with 12 hardware threads
fails to achieve more than a 1.9G increase in throughput compared
to DuckDB-st, as shown in Figure 1. Finally, as in the case of CSV,
all libraries except DuckDB-mt show an increase in the IPC with
increasing file size. This is because the same data loading instruc-
tions can be reused in a loop for an increasingly large amount of
data, while the impact of executed instructions outside the loading
function decreases.

6.2 Data and Instruction Misses
Figure 7 shows the MPKI in the L1 cache (left-hand side) and the
L1 TLB (right-hand side). As before, we break down the misses into
instruction and data. Unlike CSV loading where instruction misses
dominated, GeoParquet loading is dominated by data misses for
all libraries except OGR. While all libraries exhibit similar MPKI
values, DuckDB experiences a slight decrease in misses, while the
other two libraries observe an increase with larger file sizes.

In the TLB, data misses dominate except in OGR, where they are
roughly evenly divided between data and instruction. DuckDB has
a low miss rate, mostly below 1 MPKI. GeoPandas follows, with
misses decreasing from 3.23 to 2.13 MPKI as the file size increases.
OGR comes last with around 5 MPKI.

Finally, looking at the MPKI for the largest file of 8 million
polygons, we notice that OGR experiences the highest rate of misses
in both the L1 cache and the L1 TLB. This correlates with the fact
that it exhibits the lowest throughput, as shown in Figure 1.

7 CONCLUSION
Given the amount of geospatial data gathered by applications to-
day, reducing the overhead of data loading is crucial to prevent it
from becoming a bottleneck in data analysis pipelines. This paper
studies geospatial data loading across three spatial libraries and
four popular spatial file formats in terms of loading throughput and
micro-architectural behavior.

Our analysis shows that GeoParquet files provide the highest
data loading throughput overall. Given that GeoParquet is a binary
format, it stores geospatial data more densely than the text-based
CSV and GeoJSON formats. Furthermore, its column-oriented lay-
out enables fast vectorized execution. DuckDB outperforms all other
libraries in loading GeoParquet files, while it achieves a further
2G increase in loading throughput using parallelization. Overall,
data density in terms of the number of features per byte a file for-
mat can store correlates with loading speed. The only exception is
multi-threaded DuckDB that can load CSVs faster than Shapefiles,
despite Shapefiles being more dense. This is because Shapefiles
are loaded into DuckDB using an OGR-backed data loading table
function (st_read). In contrast, CSVs are loaded using DuckDB’s
native CSV reader, which is more efficient. Finally, we observe that
while instruction misses dominate the total number of misses in
the L1 cache, this is not the case for GeoParquet files.

This study focuses on loading entire files. However, some file
formats, such as GeoParquet, support data loading optimizations
like data skipping, while Shapefiles include an index file allowing
fast seeking. In future work, we plan to investigate the efficiency
of such data loading optimizations.

REFERENCES
[1] Ahmet Kerem Aksoy, Pavel Dushev, Eleni Tzirita Zacharatou, Holmer Hemsen,

Marcela Charfuelan, Jorge-ArnulfoQuiané-Ruiz, BegümDemir, and Volker Markl.
2022. Satellite image search in AgoraEO. PVLDB 15, 12 (2022), 3646–3649.

Analysis of Geospatial Data Loading DBTest ’24, June 9, 2024, Santiago, AA, Chile

[2] H. Butler, M. Daly, A. Doyle, Sean Gillies, T. Schaub, and Stefan Hagen. 2016. The
GeoJSON Format. Technical Report 7946. https://doi.org/10.17487/RFC7946

[3] GeoParquet Community. 2023. GeoParquet. https://geoparquet.org/. Accessed
on March 5, 2024.

[4] Adam Dziedzic, Manos Karpathiotakis, Ioannis Alagiannis, Raja Appuswamy,
and Anastasia Ailamaki. 2016. DBMS Data Loading: An Analysis on Modern
Hardware. In ADMS (Lecture Notes in Computer Science, Vol. 10195). Springer,
95–117.

[5] Esri 2023. ShapeFiles - ArcGIS Online Reference Manual. Esri. https://doc.arcgis.
com/en/arcgis-online/reference/shapefiles.htm Accessed on March 5, 2024.

[6] Martin Fleischmann. 2022. Dask-GeoPandas vs PostGIS vs GPU: Performance
and Spatial Joins. https://martinfleischmann.net/dask-geopandas-vs-postgis-vs-
gpu-performance-and-spatial-joins/. Accessed on March 5, 2024.

[7] Max Gabrielsson. 2023. PostGEESE? Introducing The DuckDB Spatial Extension.
DuckDB Foundation. https://duckdb.org/2023/04/28/spatial.html Accessed on
March 5, 2024.

[8] GDAL/OGR contributors. 2023. GDAL/OGR Geospatial Data Abstraction software
Library. Open Source Geospatial Foundation. https://doi.org/10.5281/zenodo.
5884351

[9] Sean Gillies, Casper van der Wel, Joris Van den Bossche, Mike W. Taves, Joshua
Arnott, Brendan C. Ward, et al. 2024. Shapely. https://doi.org/10.5281/zenodo.
10671398

[10] GISGeography. 2023. The Ultimate List of GIS Formats and Geospatial File Ex-
tensions. https://gisgeography.com/gis-formats/ Last updated: March 9, 2024,
Accessed: March 14, 2024.

[11] Chris Holmes. 2023. Performance Explorations of GeoParquet (and DuckDB).
Cloud-Native Geospatial Foundation. https://cloudnativegeo.org/blog/2023/08/
performance-explorations-of-geoparquet-and-duckdb/ Accessed on March 5,
2024.

[12] Kelsey Jordahl, Joris Van den Bossche, Martin Fleischmann, Jacob Wasserman,
James McBride, Jeffrey Gerard, Jeff Tratner, Matthew Perry, Adrian Garcia
Badaracco, Carson Farmer, Geir Arne Hjelle, Alan D. Snow, Micah Cochran,
Sean Gillies, Lucas Culbertson, Matt Bartos, Nick Eubank, maxalbert, Aleksey
Bilogur, Sergio Rey, Christopher Ren, Dani Arribas-Bel, Leah Wasser, Levi John
Wolf, Martin Journois, Joshua Wilson, Adam Greenhall, Chris Holdgraf, Filipe,
and François Leblanc. 2020. geopandas/geopandas: v0.8.1.

[13] Puloma Katiyar, Tin Vu, Ahmed Eldawy, Sara Migliorini, and Alberto Belussi.
2020. SpiderWeb: A Spatial Data Generator on the Web. In SIGSPATIAL. ACM,
New York, NY, USA, 465–468.

[14] Suneuy Kim and Yuvraj Singh Kanwar. 2019. GeoYCSB: A Benchmark Framework
for the Performance and Scalability Evaluation of NoSQLDatabases for Geospatial
Workloads. In Big Data. IEEE, 3666–3675.

[15] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Python in Science Conference, Stéfan van der Walt and Jarrod Millman (Eds.). 51 –
56.

[16] OpenStreetMap. 2024. https://www.openstreetmap.org.
[17] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How

good are modern spatial analytics systems? PVLDB 11, 11 (2018), 1661–1673.
[18] Varun Pandey, Alexander van Renen, Andreas Kipf, and Alfons Kemper. 2021.

How Good Are Modern Spatial Libraries? Data Sci. Eng. 6, 2 (2021), 192–208.
[19] Varun Pandey, Alexander van Renen, Eleni Tzirita Zacharatou, Andreas Kipf,

Ibrahim Sabek, Jialin Ding, Volker Markl, and Alfons Kemper. 2023. Enhancing
In-Memory Spatial Indexing with Learned Search. arXiv:2309.06354 [cs.DB]

[20] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In SIGMOD. ACM, New York, NY, USA, 1981–1984.

[21] Suprio Ray, Bogdan Simion, and Angela Demke Brown. 2011. Jackpine: A bench-
mark to evaluate spatial database performance. In ICDE. IEEE, 1139–1150.

[22] Rathijit Sen and Yuanyuan Tian. 2023. Microarchitectural Analysis of Graph BI
Queries on RDBMS. In DAMON. ACM, New York, NY, USA, 102–106.

[23] Yakov Shafranovich. 2005. Common Format and MIME Type for Comma-
Separated Values (CSV) Files. RFC 4180. https://doi.org/10.17487/RFC4180

[24] Utku Sirin and Anastasia Ailamaki. 2020. Micro-architectural Analysis of OLAP:
Limitations and Opportunities. PVLDB 13, 6 (2020), 840–853.

[25] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. 2016. Micro-
architectural Analysis of In-memory OLTP. In SIGMOD. ACM, 387–402.

[26] Knut Stolze. 2003. SQL/MM spatial: The standard to manage spatial data in a
relational database system. In Datenbanksysteme für Business, Technologie und
Web (BTW).

[27] Ruby Y. Tahboub and Tiark Rompf. 2020. Architecting a Query Compiler for
Spatial Workloads. In SIGMOD. 2103–2118.

[28] Pinar Tözün, Ippokratis Pandis, Cansu Kaynak, Djordje Jevdjic, and Anastasia
Ailamaki. 2013. From A to E: analyzing TPC’s OLTP benchmarks: the obsolete,
the ubiquitous, the unexplored. In EDBT. ACM, 17–28.

[29] Eleni Tzirita Zacharatou, Harish Doraiswamy, Anastasia Ailamaki, Cláudio T.
Silva, and Juliana Freire. 2017. GPU Rasterization for Real-Time Spatial Aggrega-
tion over Arbitrary Polygons. Proc. VLDB Endow. 11, 3 (2017), 352–365.

[30] Eleni Tzirita Zacharatou, Andreas Kipf, Ibrahim Sabek, Varun Pandey, Harish
Doraiswamy, and Volker Markl. 2021. The Case for Distance-Bounded Spatial

Approximations. In Conference on Innovative Data Systems Research, CIDR, Virtual
Event, Online Proceedings. http://cidrdb.org/cidr2021/papers/cidr2021_paper19.
pdf

[31] Eleni Tzirita Zacharatou, Darius Sidlauskas, Farhan Tauheed, Thomas Heinis,
and Anastasia Ailamaki. 2019. Efficient Bundled Spatial Range Queries. In ACM
SIGSPATIAL. 139–148. https://doi.org/10.1145/3347146.3359077

[32] Tin Vu, Ahmed Eldawy, Vagelis Hristidis, and Vassilis J. Tsotras. 2021. Incremental
Partitioning for Efficient Spatial Data Analytics. PVLDB 15, 3 (2021), 713–726.

[33] Brendan C. Ward. 2024. https://pypi.org/project/pyogrio/
[34] Jeff Whitaker. 2024. https://pypi.org/project/pyproj/
[35] Yaming Zhang and Ahmed Eldawy. 2020. Evaluating computational geometry

libraries for big spatial data exploration. In GeoRich. ACM, New York, NY, USA,
Article 3.

https://doi.org/10.17487/RFC7946
https://geoparquet.org/
https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm
https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm
https://martinfleischmann.net/dask-geopandas-vs-postgis-vs-gpu-performance-and-spatial-joins/
https://martinfleischmann.net/dask-geopandas-vs-postgis-vs-gpu-performance-and-spatial-joins/
https://duckdb.org/2023/04/28/spatial.html
https://doi.org/10.5281/zenodo.5884351
https://doi.org/10.5281/zenodo.5884351
https://doi.org/10.5281/zenodo.10671398
https://doi.org/10.5281/zenodo.10671398
https://gisgeography.com/gis-formats/
https://cloudnativegeo.org/blog/2023/08/performance-explorations-of-geoparquet-and-duckdb/
https://cloudnativegeo.org/blog/2023/08/performance-explorations-of-geoparquet-and-duckdb/
 https://www.openstreetmap.org
https://arxiv.org/abs/2309.06354
https://doi.org/10.17487/RFC4180
http://cidrdb.org/cidr2021/papers/cidr2021_paper19.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper19.pdf
https://doi.org/10.1145/3347146.3359077
https://pypi.org/project/pyogrio/
https://pypi.org/project/pyproj/

	Abstract
	1 Introduction
	2 Setup and Methodology
	3 Comparative Analysis
	4 DuckDB Analysis
	4.1 Instruction-level Parallelism
	4.2 Data and Instruction Misses

	5 CSV Loading Analysis
	5.1 Instruction-level Parallelism
	5.2 Data and Instruction Misses

	6 GeoParquet Loading Analysis
	6.1 Instruction-level Parallelism
	6.2 Data and Instruction Misses

	7 Conclusion
	References

