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ABSTRACT
The Tree-Encoded Bitmap (TEB) is a novel bitmap compression
scheme that provides a high compression ratio and logarithmic read
time. It uses a tree-based compression algorithm that maps runs in
the bitmap to leaf nodes of a binary tree. Currently, TEBs perform
updates using an auxiliary differential data structure. However,
consulting an additional data structure at every read introduces
both memory and read overheads. To mitigate the shortcomings of
differential updates, we propose algorithms to update TEBs in place.
To that end, we identified two types of updates that can occur in
a TEB: run-forming and run-breaking updates. Run-forming up-
dates correspond to leaf nodes at the lowest level of the binary tree.
All other updates are run-breaking. Each type of update requires
different handling. Through experimentation with synthetic data,
we determined that in-place run-forming updates are 2-3× faster
than differential updates, while run-breaking updates cannot be
efficiently performed in place. As a result, we propose a hybrid
solution that performs run-forming updates in place while storing
run-breaking updates in a differential data structure. Our experi-
ments using synthetic data show that our hybrid solution is faster
than differential updates as long as run-forming updates occur in
a given workload. For instance, when 7% of all updates are run
forming, our hybrid solution is 15% faster than differential updates.
Artifact Availability: The source code has been made available at
https://github.com/marcellus-saputra/Thuja.
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1 INTRODUCTION
Bitmap indexes have had a long history in database systems [5, 7,
8]. Traditionally, they are used in read-heavy workloads and are
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particularly suited for indexing low cardinality attributes. Bitmap
indexes are usually sparse, with few 1-bits interspersed between 0-
bits. Additionally, the size of a bitmap index scales with the number
of rows as well as the cardinality of the indexed attribute. As a
result, to minimize the memory overhead, bitmap indexes typically
employ compression schemes.

The Tree-Encoded Bitmap (TEB) [6] is a novel bitmap compres-
sion scheme that represents bitmaps as binary trees. Specifically,
TEBs map 1-runs and 0-runs to leaf nodes, where the proximity of
a leaf node to the root indicates the length of the run. Then, they
encode the binary tree into two bitmaps, 𝑇 and 𝐿. 𝑇 represents the
structure of the tree and 𝐿 contains the labels of the leaf nodes.
A label is either a 1-bit or a 0-bit, indicating a 1-run and a 0-run,
respectively. TEBs boast better compression ratios than the state-
of-the-art Roaring bitmap [4] while also having logarithmic read
time. However, their low read and memory overheads come at the
cost of high update overheads, as the RUM conjecture [1] indicates.

Currently, TEBs only support differential updates, i.e., they use
an auxiliary differential data structure to store the updates. Typ-
ically, the differential data structure is also a compressed bitmap.
Once the differential data structure reaches a certain number of
stored updates, it is merged with the TEB. Differential updates offer
a high upfront update performance, but this comes at the cost of
read and memory overhead. For every read, the differential data
structure needs to be consulted first before accessing the TEB. More-
over, as more updates are stored in the differential data structure,
it becomes more complex and thus less compressible, leading to
further increased read and memory overhead, which can only be
mitigated by merging the differential data structure with the TEB.

In-place updates avoid the use of differential data structures
along with their associated read and memory overheads. Specifi-
cally, to perform an in-place update in a TEB, we need to navigate
and directly modify the 𝑇 and 𝐿 bitmaps. In this paper, we provide
algorithms for performing updates in place as well as a mechanism
that combines in-place updates with differential updates to achieve
the best of both worlds. In summary, after presenting the key con-
cepts of TEBs (Section 2) we make the following contributions:
(1) We identify two types of updates that can occur in TEBs, i.e.,
run-forming and run-breaking updates. An update is run-forming
if it affects a leaf node that resides at the lowest possible level of
the binary tree; otherwise it is run breaking. We handle each type
accordingly (Section 3).
(2) We propose a hybrid approach for updating TEBs that com-
bines in-place with differential updates. In this approach, incoming
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updates are first checked to determine whether they are run form-
ing. If they are, then they are performed in place; otherwise, they
are stored in a differential data structure (Section 4).
(3) We validate our approach through experiments on synthetic
data to show that our approach is faster than plain differential
updates; the number of run-forming updates that are performed in
a given workload determines the degree of the achieved speedup.

We then discuss related work in Section 6, where we describe
existing differential update methods for bitmaps in the context of
bitmap indexes, and conclude the paper in Section 7.

2 TREE-ENCODED BITMAPS
In this section, we discuss the basic workings of TEBs; how they
are constructed, navigated, and how they are currently updated.
For more details about TEBs, we refer the reader to [4].

Construction.A TEB is constructed in two steps. First, a perfect
binary tree is constructed on top of the original bitmap. If the length
of the original bitmap is not a power of 2, then 0-bits are appended
to the original bitmap until its length is equal to the next nearest
power of 2. Next, the binary tree is pruned bottom-up; if a pair of
sibling leaf nodes possess the same label, they are removed and
their label is assigned to their parent node. After the entire tree has
been appropriately pruned, it is encoded into two bitmaps: 𝑇 and
𝐿. Namely, while traversing the tree in level order, if a leaf node is
visited, then a 0-bit is appended to 𝑇 and its label is appended to 𝐿;
otherwise, a 1-bit is appended to 𝑇 while nothing is appended to 𝐿.

Navigation. The ID of the right child of a given inner node 𝑖 can
be calculated using the following formula: 𝑟𝑖𝑔ℎ𝑡−𝑐ℎ𝑖𝑙𝑑 = 2·𝑟𝑎𝑛𝑘 (𝑖),
where the rank of 𝑖 indicates the inclusive cumulative number of
1-bits preceding 𝑖 in𝑇 . Counting all the 1-bits in the first 𝑖 bits in𝑇
is linear to the size of𝑇 . However, TEBs also implement a so-called
rank lookup table, which contains the cumulative number of 1-bits
in 𝑇 in 512 bit intervals. The granularity of the rank lookup table
is modifiable, but 512 bits per block was found to strike a good
balance between performance and additional memory overhead [6].
A point lookup operation is performed by navigating the TEB until
a leaf node is found, and then returning it. The navigation is guided
by the binary representation of the searched position.

Differential Updates. Currently, TEBs perform updates by stor-
ing them in a differential data structure, which is typically another
compressed bitmap. Storing updates works similarly to UpBit [2];
every bit in the differential data structure denotes whether its posi-
tion has been updated. The actual value of a given position 𝑝 can
then be obtained by XORing the value at 𝑝 in the TEB with the bit
at 𝑝 in the differential data structure. As updates are accumulated
within the differential data structure, it becomes more complex
and thus, less compressible. Therefore, after the differential data
structure reaches a certain size, or after a certain number of updates
have been stored, merging can be performed. The merge operation
applies all stored updates into the TEB, and resets the differential
data structure in the process. Currently, merging is done by first
decompressing the TEB, followed by bitwise XORing the TEB with
the differential data structure, and finally constructing a new TEB
using the resulting bitmap. The Roaring bitmap was found to be
the most suitable differential data structure [6].

3 IN-PLACE UPDATES
In this section, we discuss our approach for performing in-place
updates in TEBs. Note that only point updates are discussed, i.e.,
updates to a single position. Range updates are not within the scope
of this paper.

To update a TEB, the first step is to find the leaf node that cor-
responds to the updated position, for which we can use a point
lookup. Let 𝑃 be this node. Depending on whether 𝑃 resides at
the lowest possible level of the tree or not, we classify updates
into two types that require different handling: run-forming and
run-breaking updates.

3.1 Run-Forming Updates
A run-forming update is characterized by 𝑃 residing at the lowest
possible level of the tree. This is important, as at the lowest possible
level of the tree, every leaf node represents a single individual
bit in the original bitmap. Therefore, to perform a run-forming
update in place, we only need to change 𝑃 ’s label bit in 𝐿. This
is done by retrieving the position of 𝑃 ’s label bit and negating
it. Note that run-forming updates may lead to additional pruning
opportunities. Specifically, after we change the label of 𝑃 , it may
have the same label as its sibling, whichmeans they could be pruned
to save additional space. Similarly, after pruning 𝑃 and its sibling,
𝑃 ’s parent node may also be assigned the same label as its sibling,
which leads to more pruning opportunities.

Pruning a TEB in place is challenging for several reasons. First,
we must modify the𝑇 and 𝐿 bitmaps directly. However, the original
TEB implementation by Lang et al. [6] assumes static TEBs and thus
does not contain any functionality to modify 𝑇 and 𝐿. Second, to
prune a pair of leaf nodes, we need to know the node ID of the parent
node. However, TEBs only support efficient downward navigation
from the root to the leaves using the rank lookup table. Therefore,
to obtain the parent node, we need to traverse the TEB from the
root, which is a linear time operation. Finally, removing/inserting
bits from/into 𝑇 and 𝐿 is a linear time operation, since 𝑇 and 𝐿 are
stored as arrays of 64-bit integer words. In the worst case, every
word needs to be adjusted after removing or inserting even a single
bit. As a result, a naive in-place pruning algorithm that traverses
the TEB from the root and inserts/removes bits from/into 𝑇 and 𝐿
for every pair of pruned nodes incurs a quadratic complexity.

To perform run-forming updates efficiently in place, we use the
following two key insights. First, a TEB remains correct after per-
forming a run-forming update even without pruning. Second, if we
know in advance all the positions in 𝑇 and 𝐿 that are affected by
pruning a pair of leaf nodes, we can batch all the changes to the 𝑇
and 𝐿 bitmaps into a single operation instead of performing a series
of removals and insertions. The first insight allows to prune the
TEB only after performing several updates instead of pruning after
every update, similar to merging in differential updates. To leverage
our second insight, prior to the actual pruning, we traverse the TEB
and mark the positions that require modifications. Afterwards, we
can perform all changes to 𝑇 and 𝐿 in a single operation, thereby
optimizing the runtime. Finally, we note that the run-forming up-
dates themselves only require a point lookup operation followed by
negating a single bit in 𝐿, and thus, they are extremely lightweight.
Overall, our algorithm performs run-forming updates in place while
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delaying pruning and batching changes to𝑇 and 𝐿. That way, as we
show in Section 5, in-place run-forming updates can be performed
2-3× faster than differential updates.

3.2 Run-Breaking Updates
An update is run breaking if 𝑃 does not reside at the lowest level,
which means 𝑃 is a leaf node that represents a run. Therefore,
to accurately represent the updated position, the run needs to be
broken. A broken run can only be represented by a subtree, which
means that 𝑃 needs to be expanded into a subtree. This is achieved
by first turning 𝑃 into an inner node by setting its bit in 𝑇 to a
0-bit. Nodes are then inserted in pairs into the TEB to represent 𝑃 ’s
descendants; the last pair of nodes are leaf nodes.

However, early experiments show that our implementation of
in-place run-breaking updates is not efficient. This is because un-
like run-forming updates, the majority of run-breaking updates
cannot be performed in place without heavily modifying 𝑇 and
𝐿. Additionally, TEBs allocate space statically, and thus it impos-
sible to guarantee that there is enough allocated space to perform
every run-breaking update in place. Finally, we argue that a run-
breaking update requires at least linear time, unless 𝑇 and 𝐿 can be
directly modified in sub-linear time. This could be achieved by first
marking all positions in 𝑇 and 𝐿 that need to be changed using a
point lookup-like operation, followed by performing all necessary
modifications to 𝑇 and 𝐿 in a single iteration.

4 HYBRID UPDATES
In-place run-forming updates are significantly faster than differen-
tial updates, whereas in-place run-breaking updates are slower. To
achieve the best of both worlds, we devise a hybrid approach that
combines in-place and differential updates. In essence, our hybrid
approach for updating TEBs first checks whether an update is run
forming. If it is, then it performs the update in place. Otherwise, it
stores it in a differential data structure.

Let us now describe how our hybrid approach for updating TEBs
works. Let 𝑝 be the position of the bitmap that we want to update
with value 𝑣 , 𝐵 be the base TEB, and 𝐷 be the differential data
structure. First, we perform a point lookup for 𝑝 on both 𝐷 and 𝐵
to determine the actual value at position 𝑝 by XORing 𝐷 [𝑝] with
𝐵 [𝑝]. From the point lookup on 𝐵 we also obtain node 𝑛, the leaf
node that represents 𝑝 . If the actual value is equal to 𝑣 , then the
update is redundant and is canceled. Otherwise, we check 𝑛 to see
whether it resides at the lowest possible level. If 𝑛 indeed resides at
the lowest possible level, then the update is run forming. Therefore,
we negate 𝐵 [𝑝] to perform the update. Otherwise, if 𝑛 does not
reside at the lowest possible level, then we perform the update as a
differential one. To do that, we negate 𝐷 [𝑝].

Our hybrid approach brings the following benefits. First, since
some updates are not stored in the differential data structure, its size
increases at a slower pace, which reduces the associated memory
overhead. Second, since fewer differential updates are performed,
the differential data structure is mergedwith the TEB less frequently.
As a result, fewer merge operations are needed compared to using
pure differential updates in the long run.

We must also note that the above-mentioned benefits of the
hybrid approach only apply for workloads that perform several
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Figure 2: Lookup Latency.

run-forming updates. Yet, there is no guarantee that any number of
run-forming updates are possible in a given TEB, i.e., that the TEB
has leaf nodes at the lowest possible level, and that many such leaf
nodes exist. Additionally, even if there are leaf nodes at the lowest
possible level, a given sequence of updates might not affect these
leaf nodes. In this case, our approach performs identically to normal
differential updates. However, we argue that the above-mentioned
situation is a corner case as it would require an extremely clustered
bitmap, e.g., a bitmap for a sorted attribute.

5 EXPERIMENTAL EVALUATION
In this section, we first present our experimental setup and then
evaluate our approach with respect to its update latency, lookup
latency, and space consumption.

5.1 Experimental Setup
The experiments were performed on a machine equipped with an
Intel® Core™ i7-8700K CPU @ 3.70GHz processor and 16GB RAM.
In our experiments, we use synthetic bitmaps that we randomly gen-
erated based on two parameters, the bit density 𝑑 and the clustering
factor 𝑓 . The bit density 𝑑 ∈ [0, 1] is the probability of an arbitrary
position to contain a 1-bit. The clustering factor 𝑓 represents the
likelihood that a 1-bit is followed by another 1-bit. To generate the
bitmaps for the experiments in Section 5.2, we perform a Bernoulli
test in every position using 𝑑 as the test parameter to determine
the bit value. In addition to the bit density 𝑑 , in Section 5.3 we also
use the clustering factor 𝑓 as a parameter to generate bitmaps that
are similar to the ones used by Lang et al [6].

5.2 Run-Forming Updates
This experiment measures the performance of in-place run-forming
updates. Specifically, we construct two TEBs using a randomly gen-
erated bitmap, one that performs differential updates with Roaring
as its differential data structure, and one performing in-place up-
dates. In this case, the bitmap is 1 million bits long and has a bit
density of 0.1. Run-forming updates are then randomly generated
and applied to the TEB. We report the update time after performing
a certain cumulative number of updates. For instance, in Figure 1
the 400 "Updates Applied" indicates the time to perform the 400𝑡ℎ
update in the sequence. Figure 1 shows the update performance of
in-place run-forming updates and differential updates. Even from
the first update, run-forming updates can be performed significantly



SSDBM ’22, July 06–08, 2022, Copenhagen, Denmark Saputra, Papadias, Tzirita Zacharatou, Markl

10 15 20
% of In-Place Updates

0

5

10

15

20

25

30

35

40

Ti
m

e 
(

s)

Hybrid TEB
Diff. TEB

Figure 3: Average Update Latency for 100K Hybrid Updates.

faster in place than differential updates. In-place run-forming up-
dates are 2.43 times faster than differential updates for the first 100
updates. At 1000 updates, in-place run-forming updates are 3.81
times faster than differential updates.

We also compare the point lookup performance between a TEB
without and a TEB with a differential data structure. After applying
a certain number of updates, we perform a point lookup on every
position in both TEB instances and measure the average time. Fig-
ure 2 shows that point lookups are also faster without a differential
data structure. Moreover, differential updates also perform worse
over time, owing to the differential data structure becoming more
complex with every update stored. Meanwhile, the performance
of in-place run-forming updates remains constant throughout the
experiment. We also measured the space occupied by both: after
1000 run-forming updates, the TEB that uses differential updates
was 10% larger than the TEB that uses in-place updates, due to the
extra space occupied by the differential data structure.

5.3 Hybrid Updates
This experiment compares the performance between differential
updates and hybrid updates. We randomly generate several bitmaps
that are 1 million bits long in a way that varies the likelihood that
a random update is run forming. This is done by varying the bit
density and clustering factor. Specifically, an update to a bitmap
with high bit density and low clustering is more likely to be run
forming than one to a sparsely populated bitmap with high clus-
tering. For every bitmap, two TEBs are constructed: one that uses
hybrid updates, and one that uses differential updates with Roaring
as the differential data structure. Furthermore, we randomly gener-
ate 100K updates and apply them to both TEBs without checking
beforehand whether they are run-forming updates or not.

We can see from Figure 3 that even when only 7% of all updates
are run-forming, hybrid updates are on average 15% faster than
differential updates. This gap only widens as more run-forming
updates are possible; when 20% of all updates are run forming,
hybrid updates are 69% faster. We also note that as a result of
performing run-forming updates in place, the overall TEB size was
reduced by 4-9%. Furthermore, note that the average update latency
increases as more updates are performed in place. This occurs in
both the TEB with hybrid updates as well as the TEB with plain
differential updates. If more run-forming updates are possible in a
given TEB state, that means there are more leaf nodes at the lowest

level. As a result, the point lookup operation that precedes both
a differential and a hybrid update needs to navigate to the lowest
level, and thus take longer to perform.

6 RELATEDWORK
In this section, we focus on established approaches for efficient
updates to bitmap indexes.

Update Conscious Bitmaps. UCBs [3] are updated using a
delete-then-insert mechanism. This is achieved by utilizing an aux-
iliary bitvector called the existence bitvector (EV). Each element
in the EV is mapped to a row in the bitmap index. When a row
is updated, its corresponding position in the EV is invalidated by
setting it to 0, and the updated row is appended to the bitmap index.

UpBit. UpBit [2] uses a similar approach to UCBs, but at a more
granular level. Specifically, it maintains one update bitvector (UV)
per domain value. UVs are also compressed and remain highly
compressible throughout their lifetime. As a result, their memory
overhead is negligible. When a row is updated, both the correspond-
ing row in the UV of the previous value and the row in the UV
of the updated value are changed. Updating UVs increases their
complexity, which reduces their compressibility. When the UVs
become significantly large, they are merged with the bitmap index
by applying all updates to the bitmap index and resetting all UVs.

7 CONCLUSION
In this paper, we proposed in-place updates for Tree-Encoded
Bitmaps (TEBs). We achieved this by identifying the two types of
updates that can occur in a TEB, i.e., run-forming and run-breaking
updates, and handling each type differently. Through our experi-
ments, we found that run-forming updates can be performed sig-
nificantly faster than the current approach that uses differential up-
dates. However, this was not the case for run-breaking updates. As
a result, we proposed a hybrid solution that performs run-forming
updates in place where possible, while other updates are performed
as differential updates. Depending on the number of run-forming
updates that are performed in a given sequence of updates, our
hybrid approach is 15-69% faster than differential updates, while
being identical to differential updates in the worst case.
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