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ABSTRACT
Efficiently queryingmultiple spatial data sets is a growing challenge

for scientists. Astronomers query data sets that contain different

types of stars (e.g., dwarfs, giants, stragglers) while neuroscientists

query different data sets that model different aspects of the brain in

the same space (e.g., neurons, synapses, blood vessels). The results

of each query determine the combination of data sets to be queried

next. Not knowing a priori the queried data sets makes it hard to

choose an efficient indexing strategy.

In this paper, we show that indexing and querying the data

sets separately incurs considerable overhead but so does using one

index for all data sets. We therefore develop STITCH, a novel index

structure for the scalable execution of spatial range queries on

multiple data sets. Instead of indexing all data sets separately or

indexing all of them together, the key insight we use in STITCH

is to partition all data sets individually and to connect them to the

same reference space. By doing so, STITCH only needs to query

the reference space and follow the links to the data set partitions to

retrieve the relevant data. With experiments we show that STITCH

scales with the number of data sets and outperforms the state-of-

the-art by a factor of up to 12.3.
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1 INTRODUCTION
In several real-life applications data is naturally divided into dis-

tinct categories and users are often interested in a subset of them.

Additionally, users issue queries that explore different combinations

of categories as they rarely know a priori which categories need

to be combined to answer a particular question or test a specific

hypothesis. To build an anatomically accurate spatial atlas of the

human brain, for example, the neuroscientists in the Human Brain

Project (HBP) [15] study the structure and shape of neurons using

bright-field microscopy, and images of the whole brain using mag-

netic resonance imaging (MRI). This process results in different

data sets that contain data originating from different observational

sources, potentially representing different types of neurons or other

brain structures (e.g., synapses and blood vessels). Inspecting the

same brain regions in these different data sets allows to verify that

a given region contains the correct ratio and distribution of differ-

ent brain structures, and is key to building a brain atlas. There is

consequently the need to efficiently retrieve the same spatial region

from a number of different data sets, stored on disk due to their

size. This problem is challenging because the queried data sets are

chosen ad-hoc depending on the results of previous queries and

thus are not known a priori. As more observational sources are

added, the problem becomes increasingly challenging.

Formally, let D be a set of N spatial objects. Each object has a

spatial extent
1
and a tag that denotes the object’s category. Cate-

gories have application-specific semantics; for example the different

categories can correspond to neurons of different types, or to the

same neurons obtained from different samples.

Definition 1 (Bundled Spatial Range Query). Let c be the
number of distinct categories; each tag thus is represented as an integer
in {1, 2, ..., c}. Denote by Di (1 ≤ i ≤ c) the set of objects in D
having category tag i . Every object has exactly one tag, and thus
D1,D2, ...,Dc are mutually disjoint and

⋃
i ∈c Di = D. Given an

axis-aligned range query r defined as a three dimensional interval
r = [l1,u1] × [l2,u2] × [l3,u3] and a non-empty set Q ⊂ {1, 2, ..., c},
a bundled spatial range query returns, for each i ∈ Q , all objects
d ∈ Di intersecting with r . We call the query parameter Q a category
selection. Note thatQ can be any non-empty subset of {1, 2, ..., c}, i.e.,
a combination of categories. The total number of possible Q is 2c − 1.

Existing spatial indexing approaches can be applied, but not

knowing a priori which combination of categories will be queried

together renders them inefficient. Using a single index for all cate-

gories is only efficient when a query is executed on all categories.

1
The description in this paper focuses on 3D objects but the proposed techniques also

work on 2D and higher-dimensional objects.

https://doi.org/10.1145/3347146.3359077
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Otherwise the I/O overhead can be considerable as data not be-

longing to the categories of interest needs to be retrieved from

disk and filtered out. On the other extreme, using multiple indexes,

one for each category, becomes inefficient when the number of

categories is large, as the same spatial region has to be repeatedly

located within different index structures (that typically suffer from

over-coverage, i.e., dead space, and overlap of minimum bounding

boxes [9]). Overall, the dominant cost of using (i) a single index is

retrieval and filtering of unnecessary data and (ii) multiple indexes

is repeated traversal of index structures.

To achieve the best of both worlds, we introduce a new indexing

approach that exhibits superior performance by eliminating unnec-

essary I/O operations. Our approach consists of two phases. The

first phase is category-oblivious; it simply uniformly divides the

reference space that encompasses all the categories. The second

phase is category-aware and segments each individual category

into partitions in a data-driven manner. To enable pinpoint access

to regions in the queried categories, the category partitions are

linked to the uniform partitions of the reference space. With this

strategy, our approach retrieves data from precisely the categories

needed without incurring the undue overhead of querying separate

indexes.

Note that we target scientific use cases where all the raw data

(or at least most of it) is available before querying. We thus focus

on developing a bulkloading approach.

Contributions. To the best of our knowledge, we are the first

to study in-depth the problem of bundled spatial range queries

and to identify the lack of a solution that provides efficient access

to individual categories (or data sets) that are all enclosed within

the same spatial volume. Given the importance of this problem in

real-world applications, we advocate that specialized efforts are

required to improve the performance of existing spatial indexing

approaches. The main contribution of this work is the development

of a spatial indexing approach that scales with an increasing number

of categories, yet without penalizing performance when the number

of categories is small.

The design of our approach is based on the key observations that
most overhead in baseline approaches originates from (a) traversing
(hierarchical) index data structures repeatedly and unnecessarily and
from (b) late pruning results from irrelevant categories.

We therefore develop an index which is based on a simple, flat,

grid-based reference space. With this, query execution can quickly

assess which areas are likely to be in the query result without

traversing one or multiple hierarchical index structures repeatedly.

Furthermore, to enable early pruning irrelevant categories in the

query execution, we store information on where and how to re-

trieve category specific data within the grid, in a data structure

that enables efficient filtering based on categories. As a result, our

approach scales with an increasing number of categories, avoiding

the retrieval of an excessive amount of index related data structures

as well as irrelevant results. Our approach also allows to incremen-

tally add new categories with only limited updates to the reference

space (and no updates to other categories) because each category

is treated, partitioned and stored independently.

To showcase these techniques, we develop STITCH, a bundled

spatial index that achieves efficient query execution while scaling

with an increasing number of categories. Albeit we base STITCH on

simple ideas, these ideas prove to be effective. As our experiments

on real-world data show, STITCH achieves a speedup of ∼ 4.5×

compared to indexing each category separately with a state-of-the-

art index, and 1.3× - 12.3× compared to indexing all categories with

a single index.

2 MOTIVATION
Spatial data is at the core of many scientific processes as scien-

tists study entities using their morphological or topological prop-

erties. Observational data is acquired using a variety of different

instruments and techniques and originates from a variety of input

samples, resulting in multiple data sets describing the same spatial

volume. Given these data sets, scientists need to efficiently perform

ad-hoc queries collecting data from only a subset of them. Querying

a certain combination of data sets that are arbitrarily chosen from

a pool of tens or hundreds of data sets is the general problem that

drives the design of STITCH.

Use Cases. The main motivation behind our work stems from our

collaboration with the Human Brain Project (HBP) [15]. Neuro-

scientists in the Human Brain Project aim to build an atlas of the

human brain which will serve as a unifying “spatial scaffold” for

studying different aspects of the brain. The input to create this atlas

is observational data collected using a variety of light microscopy

modalities (such as laser-scanning, wide-field epifluorescence, and

bright-field microscopy) and magnetic resonance imaging (MRI).

Scientists then need to ensure that their spatial model is biorealistic.

To do so, they compute statistical properties for different regions in

the model and compare them with the observational data. Overall,

in both the building and the validation phase, scientists need to

retrieve complementary information about a given spatial region

from a subset of the data sources that are available to them in an

exploratory fashion. The bulk of the data used in this analysis is

static, as scientists incorporate new information by adding new

data sources rather than updating existing ones. With the increase

in the number and size of the analyzed data sets, the exploration

process is significantly hampered.

In other disciplines (e.g., cosmology [12] and seismology [1])

scientists simulate phenomena on a large scale. The outcome of

the simulations are several data sets, each containing a different

representation of the simulation result and, in the analysis of the

result, parts of different data sets need to be combined. In cosmol-

ogy, for example, N-body simulations of different particle types

(dark matter, gas, stars, etc.) are used to study the evolution of the

universe. Each resulting data set stores the locations of one particle

type and for the final analysis, astronomers need to query different

data sets together without knowing a priori the exact combination.

Data Management Challenge. There are three straightforward
strategies for evaluating bundled spatial range queries using exist-

ing spatial indexes. The first strategy, 1-for-each, builds a dedi-
cated spatial index (e.g., R-Tree [9]) for each category. A bundled

spatial range query is evaluated by searching the |Q | spatial indexes
on the categories in Q . Adding a new category incurs negligible

overhead as it simply entails building an index for the new cate-

gory. The second strategy, all-in-1, builds a single index structure
containing all categories. Given a bundled spatial range query, it

traverses the index to get a set of spatial objects potentially quali-

fying the query predicates, it filters out irrelevant items that do not
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Figure 1: Scaling with an increasing number of categories
in the category selection. 1-for-each does not scale well
as the number of categories increases, all-in-1 introduces
an overhead when only a small subset is queried, while
queried-in-1 provides the best performance, but is a prac-
tically infeasible solution.

belong to any of the queried categories in Q , and finally evaluates

the spatial predicate on the remaining items. New categories are

added by updating the index, which can incur substantial overhead.

The third strategy, queried-in-1, takes the all-in-1 strategy to

the extreme and builds indexes for all possible category combina-

tions. That way, we can answer a bundled spatial range query by

searching the specific index that contains the exact combination of

queried categories (and nothing but those).

We implement all strategies using the R-Tree [9] spatial index,

which is arguably the most widely used index structure for spatial

data. In a motivation experiment we index 100 neuroscience data

sets (categories) representing the same brain volume, ∼ 1GB each,

and measure the total number of I/Os (i.e., disk pages read) for

200 range queries corresponding to different brain regions of size

10
−3
% of the total volume. To evaluate the performance of the

queried-in-1 strategy, we create indexes that contain exactly the

combination of the 25, 50, 75, and 100 categories that are queried

together. The precise experimental setup is described in Section 7.

The results of the motivation experiment in Figure 1 show the

trade-offs of each strategy as the number of queried categories

increases. The all-in-1 strategy achieves the same consistent

performance regardless of the number of categories, while the per-

formance of 1-for-each is linearly decreasing with the growing

number of categories. This is expected, as the former always has to

inspect the same (big) index, while the latter has to probe an increas-

ing number of (smaller) indexes. Interestingly, none of these two

strategies achieves the best performance in all cases and the crossing

point clearly indicates what strategy is preferred for what scenario.

As expected, queried-in-1 provides the best performance, min-

imizing the query cost irrespective of how many categories are

queried. Note, however, that this strategy is unrealistic because the

cost of constructing and storing indexes for all possible category

combinations (2
100 − 1 in our example) is prohibitively high.

The goal of this work is to develop an indexing approach that has
the same querying behavior as if there was a dedicated index for
the queried combination, without building indexes for all possible

combinations a priori. As we will show next, this is achieved by

physically bundling the indexes for different categories.

3 RELATEDWORK
Data-oriented partitioning. Arguably the seminal spatial index

structure is the R-tree [9]. The R-tree is a disk-based index con-

sisting of a hierarchy of minimum bounding boxes (MBBs) which

recursively enclose data objects. By doing so, the R-Tree is resilient

to data skew, but faces the problems of over-coverage and overlap

of MBBs, which results in multiple (partial) paths being explored

during querying. Many extensions to the basic approach have been

proposed to address these issues and optimize the node MBBs dur-

ing dynamic index maintenance. To increase robustness against

different data distributions, the R
∗
-tree [4] employs multiple opti-

mization criteria to choose the node into which a new object should

be inserted. In addition, it removes and reinserts the spatial objects

of an overflowing node in an attempt to minimize the dead space

and the margin in each node. The improved query performance

comes at the expense of higher update costs. The RR
∗
-tree [5] intro-

duces more adaptive optimization strategies to further reduce I/O

costs and enhance search performance. The R+-Tree [16] creates

non-overlapping nodes by inserting objects into multiple leaves,

which makes the index larger. The cR-tree [7] considers the R-tree

node splitting procedure as a typical clustering problem. To find a

good split upon a node overflow, it partitions the data in multiple

nodes using k-means. Instead of modifying the index structure or

the splitting procedure, the approach presented in [17] proposes to

solve the problem of over-coverage by improving MBBs. It converts

node MBBs to CBBs (Clipped Bounding Boxes) by clipping away

dead space that is concentrated around the MBB corners.

Since our data sets are massive and known a priori, we focus

on bulkloaded R-Trees. Bulkloading approaches group spatially

close objects and store them on the same disk page to improve

locality and reduce overlap between nodes. Then, an R-Tree is built

on top of those disk pages, typically bottom-up. The Hilbert R-

Tree [11] uses the Hilbert space-filling curve to order the objects

according to their spatial proximity. Sort-Tile-Recursive (STR) [13]

recursively tiles the space, sorts the objects in a tile along each

dimension and thereby also guarantees spatial proximity as well

as small MBBs, outperforming the Hilbert R-Tree [11]. In contrast,

the Top-down Greedy Split (TGS) [8] works top down: it splits

the data set into partitions so that on each level the area of each

partition is minimized. This process continues recursively until

each partition fits on a disk page. While bulkloading with TGS

takes much longer than with other approaches, the resulting R-Tree

outperforms the Hilbert R-Tree and STR on extreme data sets (with

respect to skew and aspect ratio). The Priority R-Tree (PR-Tree) [3]

groups all objects with extreme coordinates in the same dimension

in the same node, thereby reducing the area and overlap of the

remaining nodes. This improves performance on extreme data sets,

making the PR-Tree outperform TGS. As recently shown [19], R-

Tree-based approaches still suffer considerably from unnecessary

I/Os caused by overlap. FLAT [19] consequently adds connectivity

(neighborhood) information so that the R-Tree is only used to locate

any single data object inside a query volume and the remaining

objects are found by crawling through neighbors.
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Figure 2: STITCH links multiple data sets (categories) to
the same index/reference space (bottom center) and directs
queries to the destination data sets via corresponding links.

Space-oriented partitioning. Instead of grouping objects hierar-

chically based on their proximity and allowing groups to overlap,

another family of spatial indexing methods splits the space using

hyperplanes into a set of disjoint partitions that are stored flatly [2]

or in a hierarchical structure [6, 10, 20]. The simplest space-oriented

indexing technique is the uniform grid [2], where a predefined area

is divided into rectangular cells. Each cell stores together all the

objects that overlap with it. In contrast, the KD-Tree [6] divides the

space hierarchically in a data-driven manner. At each level, it splits

the objects along one dimension in two partitions such that each

partition contains approximately the same number of objects.

Finally, we note that the term category in this work simply refers

to a group of objects (e.g., a data set) rather than a textual attribute.

Thus, research on keyword search (i.e., [14]) is not related to us.

4 STITCH OVERVIEW
To overcome the aforementioned challenges, the proposed method

STITCH avoids the repeated traversal of multiple index structures

on disk and the retrieval of unnecessary data. This is achieved by

combining data-oriented partitioning with space-oriented indexing.

First, similar to the 1-for-each and unlike the all-in-1 strat-
egy, spatial objects belonging to different categories are stored in

separate data files to enable retrieval of data from precisely the cat-

egories needed. To retrieve data from each file efficiently, spatially

close objects are stored on the same disk page. The assignment of

spatial objects to disk pages is achieved by applying a data-oriented

partitioning method which adapts to the distribution of objects in

each individual category.

Second, unlike the 1-for-each but similar to the all-in-1 strat-
egy, instead of using one index per category to index the minimum

bounding boxes (MBBs) of the pages, STITCH builds a single in-

dex on the reference space (the common universe that encloses all

the underlying objects from all categories). To make access to this

reference index efficient, STITCH avoids a hierarchical structure

and organizes it in a uniform grid. The grid cells store links to

the categories, i.e., each cell stores links to the category pages it

overlaps with. To have more pruning power in the reference index,

along each page link, the cell also stores the page MBB. Within

each cell, the links (and corresponding page MBBs) are arranged

such that links to a specific category can be efficiently accessed.

Figure 2 shows the overview structure of STITCH.

With the reference index and the category pages, the result of

range queries is computed in two phases. STITCH first probes the

reference index to find all grid cells overlapping with the query

range and retrieves all the page MBBs from those cells for the

queried categories. This phase is based on the key insight that un-

like data-oriented hierarchical indexes, our reference index does

not suffer from overlap. Furthermore, STITCH avoids traversing

multiple index structures because all the categories are mapped to

the same reference index. In the second phase, STITCH discards the

page MBBs that do not fall in the queried area and only visits the

qualifying disk pages by following the corresponding links. That

way, STITCH retrieves spatial objects from exactly those categories

needed and for the queried area, thereby significantly reducing the

amount of unnecessary data retrieved. Comparing to existing grid-

based indexing approaches, STITCH suffers less from the problem

of data replication and can thus accommodate categories having ob-

jects of varying sizes without the need for expensive fine-tuning of

the grid configuration. This is because the uniform grid in STITCH

indexes pageMBBs rather than individual spatial objects - the actual

spatial objects are organized using a data-oriented space partition-

ing strategy which is resilient to data skew. As we discuss in more

details in the following, we adapt the data-oriented partitioning

strategy to reduce the amount of replicated data even further.

5 STITCH INDEXING
At the core of STITCH indexing is the algorithm that partitions and

links each individual category to the common reference space. In

the following section, we first discuss this partitioning and link-

ing algorithm and then present the data structures that store the

partitions and the linking information for all categories.

5.1 Partitioning & Linking
We segment the entire space of each category into partitions, each

partition corresponding to one disk page. We then create a link

between a partition P and a grid cellC of the reference index if and

only if at least one element contained in P overlaps C . The created
link is essentially the pointer to the partition P (i.e., the location on

disk where P is stored) and is stored in grid cell C .
In theory, any partitioning method can be used to partition the

categories. Nevertheless, to avoid the problem of replication asso-

ciated with space-oriented partitioning, STITCH follows a data-

oriented partitioning strategy. In particular, we base our partition-

ing strategy on an existing algorithm, Sort-Tile-Recursive (STR [13]).

STR first sorts the spatial objects in the x-dimension and partitions

them along this dimension into fixed sized partitions. Each such

partition is subsequently sorted and partitioned in the other di-

mensions (y, and then z). The partition sizes in each dimension are

chosen so that the final partitions contain at most as many spatial

objects as can be stored on a single disk page.

To minimize partial overlap with the grid cells of the reference

index, STITCH extends STR to align the data partitions with the

(conceptual) cell boundaries. This is achieved by adding spatial

objects in the sorted order to partitions in each dimension until: (i)

a grid boundary is crossed, or (ii) the current partition is full. The
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Figure 3: The partitioning procedure packs spatially close
elements on the same disk page (rectangle) and aligns the
page boundaries as much as possible with the grid bound-
aries (dashed lines) of the reference index.

first condition makes the partitioning grid-aware and minimizes the

number of cells that a final category partition overlaps with (thus

minimizing the number of replicated links in the reference index).

While doing so may underfill disk pages, i.e., less than the maximum

elements are stored in a partition, our strategy proves effective in

reducing replicated links and providing fine-grained data access.

The strategy ultimately trades disk space for performance.

We call our grid-aligned data-oriented partitioning strategy Sliced

Data-Oriented Partitioning (Sliced-DOP). Sliced-DOP has the same

complexity as STR, since it does not introduce any additional passes

over the data. The pseudocode of Sliced-DOP is given in Algo-

rithm 1. Note that the only information needed to detect a grid

boundary crossing is the grid resolution, defined by the input pa-

rameter д. Also note that the linking is performed alongside the

partitioning and it is based on object overlap and not on page MBB

overlap: if the intersection between a page and a grid cell does not

contain any objects (dead space), the cell is not linked to the page.

Figure 3 illustrates the intuition behind our partitioning tech-

nique using a 2D example. This example assumes that each partition

contains at most 4 spatial elements — the same number a disk page

can store. Since there are 16 objects in total, they are first divided in

x-partitions of maximum 8 objects each along the x dimension, and

then they are further divided in the y dimension so that the final

partitions contain at most 4 objects. The conceptual grid boundaries

are shown with dashed lines. When dividing in the x dimension,

partition P1 contains the maximum number of objects, as it is fully

enclosed in a single grid x-tile (X1). On the other hand, even though

P2 is not full, we do not add the next elements in the sorted order

(shown with solid color) in it, so that it remains fully enclosed in

the first grid x-tile (X1). The remaining 6 elements are then inserted

in P3. Similarly, when dividing in the y dimension, although P11 is
not full, we do not extend it with the 2 elements shown with solid

grey color so that it remains fully enclosed in C1, and a new page,

P12, starts in C2. The same logic applies in the division of P3.
The following links are introduced in the reference index: C1

is linked to page P11, C2 is linked to pages P12, P13 and P2, C3
to P31, and lastly C4 to P31 and P32. This example also highlights

that in some cases, avoiding link replication is not possible: P31
contains two objects that overlap with both C3 and C4. As a result,

Algorithm 1: Sliced-DOP
Input: D: array of spatial objects

д: # of uniform grid cells in the reference space

ps: partition size (e.g., # objects per disk page)

Output: P : array of all partitions (stored on disk)

L: reference index (stored on disk)

// Init. running partitions for each dimension:

1 Px ← ∅; Py ← ∅; Pz ← ∅;

2 C ← ∅ // set of grid cells overlapping a running partition

// partition sizes:

3 s = 3

√
|D |/ps; sx = |D |/s; sy = sx /s; sz = sy/s;

4 sortByX(D); // sorts by x-coord.of object centers

5 tilex ←cellNrAtX(д, D[0]); // current tile at x-dim.

6 foreach i ∈ D do
7 nextTilex ← cellNrAtX(д, i);
8 if tilex == nextTilex then
9 Px ← Px ∪ {i};

10 if |Px | == sx or tilex , nextTilex then
11 sortByY(Px);

12 tiley ← cellNrAtY(д, Px [0]);
13 foreach j ∈ Px do
14 nextTiley ← cellNrAtY(д, j);
15 if tiley == nextTiley then
16 Py ← Py ∪ {j};

17 if |Py | == sy or tiley , nextTiley then
18 sortByZ(Py);

19 tilez ← cellNrAtZ(д, Py [0]);
20 foreach k ∈ Py do
21 nextTilez ← cellNrAtZ(д, k);
22 if tilez == nextTilez then
23 Pz ← Pz ∪ {k};

// Keep track of overlapping cells:

24 C ← C∪ cellNr(д, k);
25 if |Pz | == sz or tilez , nextTilez then
26 P ← P ∪ {Pz }; // ready partition

27 foreach c ∈ C do
28 store in cell c of L the pointer to Pz

and the MBB of Pz ; // linking

29 tilez ← nextTilez ; Pz ← ∅; C ← ∅;

30 tiley ← nextTiley ; Py ← ∅;

31 tilex ← nextTilex ; Px ← ∅;

32 return P , L

both cells need to contain a link pointing to P31. In general, as

the number of objects falling on grid boundaries increases, more

links need to be replicated. The impact of replication, however,

is significantly smaller compared to existing grid-based indexing

approaches which replicate individual objects because replication

happens at the disk page level and typically objects overlapping the

same neighboring cells are stored in the same page. With a larger
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Algorithm 2: STITCH Indexing Algorithm

Input: datasets : set of spatial data sets, each corresponding to

a distinct category

д: # of uniform grid cells in the reference space

ps: partition size (e.g., # objects per disk page)

ht : in-memory hash table storing the disk offsets of non-empty

grid cells;

foreach D ∈ datasets do
P ,L← Sliced-DOP(D, д, ps);
foreach grid cell c of L do

store in the header page of c the number of pointers in

c for dataset D;
store in ht the disk offset of the header page of c for
dataset D;

page size, more boundary-crossing objects are grouped together

and the number of replicated links decreases.

Note that Sliced-DOP is not equivalent to first applying uniform
grid partitioning and then performing STR within each grid cell.

The difference is that Sliced-DOP sorts the objects globally in each

dimension, not locally within each grid cell. As a result, Sliced-DOP
preserves the relative one-dimensional distances between objects

across grid cells.

The pseudocode for indexing in STITCH, taking into account

multiple categories, is given in Algorithm 2.

5.2 Data Structures
This section discusses how we store the partitioning and linking

information to support efficient query execution with STITCH. In

particular, we discuss STITCH’s core data structures, the metadata
records containing information about each object page, the reference
index used to retrieve the metadata records in the queried range,

and finally object pages storing the actual spatial elements.

1)Metadata: A metadata record refers to a particular object page

and contains a link (pointer) to the object page and the page MBB.

By recording the MBB with each link, the data partitions that do

not overlap query volumes can be filtered immediately without the

need of reading the disk page(s) storing the actual objects.

2) Reference Index: To start query execution, the reference index
must return all the metadata records that fall inside the query range.

In STITCH we use a disk-based uniform grid to organize all the

metadata records for all the categories in the reference index. A

metadata record is stored in a grid cell if the corresponding object

page contains at least one object that overlaps with the grid cell.

Real simulation data sets have a skewed data distribution and as a

result the number of metadata records stored with each grid cell

can vary significantly, while a majority of the grid cells are empty.

STITCH therefore also maintains an in-memory hash table to store

the disk offsets of all the non-empty grid cells. Additionally, the

header disk page of each grid cell records the number of links

that fall in the grid cell for each category. The links are ordered

per category, so that all links for category i precede any link for

category j for i < j. The metadata records of each grid cell are

Figure 4: STITCH’s data structures and their interaction:
The disk-based reference index stores the metadata records
in its grid cells which point to the object pages. STITCH
also maintains an in-memory hash table indicating the non-
empty grid cells which is not shown in the Figure.

flushed to disk sequentially. Spatially close records are very likely

to be stored on the same grid cell and thereby on the same disk page,

resulting in good disk locality for fast retrieval of the metadata.

3) Object Pages: On each disk page, Sliced-DOP packs the maxi-

mum possible number of elements while at the same time ensuring

that in most cases an object page is linked with only one grid cell

of the reference index. The exact number of elements that a page

can hold depends on their size, e.g. for an axis aligned box with an

id the size is 6 floats plus 1 integer. Spatial locality is preserved by

storing spatially close objects on the same page.

All data structures and their relations are illustrated in Figure 4:

several metadata records are stored on each grid cell of the reference

index and each metadata record contains a link to an object page.

6 STITCH QUERY EXECUTION
STITCH answers a query on a subset Q of all categories in two

phases: it first retrieves the set of links that overlap with the query

range and point to the queried categories and then, by following

those links, it retrieves the actual objects.

More precisely, STITCH first probes the reference index and

finds the cells overlapping the query volume. It reduces the search

space instantly and only fetches the links to partitions as well as the

partition’sMBB from the grid cells for each of the queried categories

q ∈ Q . STITCH initially purges any duplicate links retrieved from

different grid cells that intersect with the same data partition. In

a next step STITCH further reduces the number of category data

pages needed to be retrieved by discarding the links associated

with an MBB that does not overlap with the query volume. With

the set of remaining links, STITCH retrieves the disk pages that

contain the actual objects. In a last filtering step, STITCH discards

the objects whose MBB does not overlap with the query volume.

The pseudo code of the complete STITCH querying algorithm is

described in Algorithm 3.

Clearly, STITCH avoids the repeated traversal of the index struc-

ture because we query the reference index only once. In addition,

using a uniform grid as the reference index enables efficient query

execution: STITCH can readily calculate the intersection between

the query and the grid cells and obtain the offsets of those inter-

secting grid cells on disk. Finally, STITCH reduces the amount of
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Algorithm 3: STITCH Querying Algorithm

Input: L: reference index
д: # of uniform grid cells in the reference space

query: spatial range query
datasets: set of queried spatial data sets, each

corresponding to a distinct category

Output: objects: result set of objects

// set of grid cells overlapping the query:
C ← cellNr(д, query);
foreach dataset D ∈ datasets do

P ← ∅ ; // set of qualifying links

foreach c ∈ C do
fetch from cell c of L themetadata_records of D;

foreachm ∈metadata_records do
if m.MBB does not overlap query then

discardm;

else
P = P ∪m.link ;

foreach p ∈ P do
retrieve the disk page pointed by p;
foreach object o on the disk pages do

if o overlaps query then
objects = objects ∪ o;

return objects

retrieved data effectively by first only retrieving links pointing to

categories that are queried for and ultimately discarding the links

associated with MBBs that do not overlap with the query range.

7 EXPERIMENTAL EVALUATION
In the following section we describe the experimental setup &

methodology and demonstrate the benefits of STITCH using real

neuroscience workloads. We compare STITCH against the two

previously introduced strategies, 1-for-each (one index per cate-

gory) and all-in-1 (a single index for all categories), and present

a detailed breakdown of the performance. Lastly, we conduct a

sensitivity analysis where we vary specific data set, workload and

configuration parameters to better understand STITCH’s behavior.

7.1 Experimental Setup & Methodology
Hardware Configuration. The experiments were performed on

a Linux Ubuntu 12.04 machine equipped with 2× Intel Xeon Pro-

cessors each with 6 cores running at 2.8GHz, and 48GB RAM. The

storage consists of 2 SAS disks of 300GB capacity each.

Competing Approaches. We experimentally compare STITCH

against the following spatial indexes: FLAT 1-for-each, FLAT
all-in-1 and GRID (1-for-each). We omit comparisons against

the R-Tree because it is outperformed by FLAT [19]. For our work-

load, FLAT 1-for-each answers queries by up to 2× faster com-

pared to R-tree 1-for-each, and FLAT all-in-1 is∼ 6× faster than

R-tree all-in-1. We use the original implementation of FLAT [19]

that the authors made available to us and our own implementation

of a uniform disk-based grid index. Given that it is unrealistic to

index an entire data set in-memory before flushing the data to disk,

GRID inherently writes data for each grid cell to disk individually

(and thus distributed) when the memory buffer becomes full, which

can result in random reads during the querying phase. Similarly to

STITCH, GRID maintains an in-memory hash table storing the disk

offsets of all the non-empty grid cells. To avoid replicating objects

that overlap with multiple grid cells, in our GRID implementation

we adopted the following strategy proposed in [18]: each object

is assigned only to the grid cell that encloses its center. During

querying, to ensure that all the objects intersecting a grid cell are

retrieved, the query range is enlarged by the width of the biggest

object in each dimension.

All approaches are implemented single-threaded in C++ and

compiled with g++ with the maximum optimization level.

Configuration Parameters. Given the absence of heuristics, we

identify the best performing configuration for STITCH and GRID

with a parameter sweep. The resolution of GRID is set to 60
3
cells,

which balances the number of objects retrieved and disk spatial

locality. STITCH performs best with 100
3
cells for the reference

index. We set the disk page to 4KB for all approaches and for both

metadata and data files. The memory footprint of all indexes is

limited to 1GB during index building, and we use only one disk

(i.e., no RAID configuration). We assume cold system caches in all

experiments: the OS caches and disk buffers are cleared (overwritten

with an empty file) before executing each query.

Data Sets. We use data sets that model a small part of the brain

with a surface mesh consisting of 3D triangles in a volume of 285

µm3
. Each neuron type forms one category. Different categories are

stored in different data sets (similarly to the cosmology use case

described in Section 2). In other words, each data set we use in our

experiments (10 data sets in total) corresponds to a subset of the

neurons that are contained in the same brain volume. We approxi-

mate the 3D triangles with axis aligned MBBs and store only these

MBBs along with an object identifier in the object partitions. All

approaches therefore only test for overlap between the stored MBBs

and the query volume. The MBB coordinates are represented with

double precision floating point numbers and the object identifier is

an integer. Each data set occupies ≤ 5 GB on disk, and in total the

indexed data is ∼ 45 GB.

Benchmark.Wedefine a benchmarkwhich consecutively executes

200 spatial range queries of varying sizes. The size, aspect ratio

and the location of each query is randomly chosen. The average

query volume in the benchmark is 10
−6
% of the entire universe.

This benchmark is derived from our neuroscience use-case where

specific subvolumes are retrieved with range queries for analysis

purposes. As different subregions in the brain vary significantly in

volume, the size of the issued queries varies accordingly.

7.2 Comparative Analysis
We first perform a comparative analysis among all competing ap-

proaches. For each experiment, we execute the same 200 queries

taken from our real neuroscience benchmark to compare the total

query execution time and the total amount of data retrieved. Addi-

tionally, we compare the time to build the indexes and the storage

space required for each approach. Lastly, we compare the cost of

adding a new data set in each approach. In each experiment, we

increase the number of data sets that are queried to show how each
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Figure 5: Scaling-up with the number of queried data sets.

approach scales as scientists increase the number of data sets (thus

the total amount of data that is queried increases as well).

Query Execution Time. Figure 5 shows the query execution time

as we increase the number of data sets queried, when all 10 data

sets have been indexed a priori. In the same figure we also plot

the line which shows the optimal strategy based on FLAT, i.e.,

indexing precisely the data sets needed for each query combination

(queried-in-1, see Section 2). STITCH executes the queries fastest

because the majority of the time (∼ 53%) is spent on useful work, i.e.,

retrieving objects, not on traversing index structures or retrieving

metadata information as other index structures do.

FLAT on the other hand incurs a higher overhead for retrieving

metadata information. As Figure 6 shows, querying the index can

take up to ∼ 90% of the total time for FLAT 1-for-each. The FLAT
all-in-1 strategy requires roughly the same time as the same

number of objects are always retrieved irrespective of how many

data sets are queried. In addition to the cost of navigating the FLAT

index, FLAT all-in-1 retrieves all the objects within the query

volumes from all data sets, as Figure 6 shows.

As a consequence, STITCH is 12.3× faster than FLAT all-in-1
when only a single data set needs to be queried. When all data

sets are queried, STITCH performs comparably to the all-in-1
strategy, but is still 1.3× faster. Crucially, the trends in Figure 5

do not imply a crossover point where STITCH is outperformed by

FLAT all-in-1 if we add more data sets: the only reason why the

query execution for FLAT all-in-1 remains constant is because

it always indexes 10 data sets throughout the experiment. If we

add more data sets, the query execution time for FLAT all-in-1
will increase (i.e., the flat black line corresponding to all-in-1will
move higher up in the graph).

The 1-for-each approach scales poorly compared to the other

approaches. In particular, compared to STITCH, FLAT 1-for-each
performs ∼ 4.5× slower on average. The key reason is that the cost

of navigating each FLAT index grows due to having a separate index

for each data set as shown in Figure 6. GRID 1-for-each performs

∼ 5× slower on average compared to STITCH. The primary reason

is that the skew in the data sets results in grid cells that contain

many objects and a lot of unnecessary data is retrieved during

querying as Figure 6 indicates.

Data Retrieved. Comparing the measurements in the left side of

Figure 6 with the respective approaches in the right side of the same

figure, we can see that the data retrieved from disk correlates with

Figure 6: Breakdown of: Query execution time (left) and
Pages read per query (the page size is 4KB) (right).

Figure 7: Total number of page reads per result element.

the total query execution time and therefore is the most significant

factor that defines the trend of performance for each approach (i.e.,

the execution time for all approaches is I/O bound). Operations

such as testing overlap between partitions and querying MBBs -

as well as filtering objects in case of the all-in-1 approach - are

performed while the data resides in memory and therefore do not

significantly affect query execution. Although GRID retrieves by

far the largest amount of data compared to all the other approaches,

the query execution time is not affected severely because the access

pattern is mainly sequential.

To further study the different index structures and quantify their

overheads, we measure the number of page reads per result ele-

ment as we increase the number of data sets, focusing on FLAT

and STITCH. Figure 7 shows that STITCH has a fixed overhead

irrespective of the number of data sets. FLAT all-in-1 has a big
overhead when only 1 data set is queried out of the 10 indexed data

sets, but it converges to STITCH’s performance when all 10 data

sets are queried. Finally, FLAT 1-for-each has a higher overhead

than STITCH which is slightly increasing with more data sets.

IndexTime.Considering the time to build the indexes, the all-in-1
approach is the most time-consuming. FLAT index building requires

(externally) sorting the data on each dimension to create partitions,

building a tree on top of the partitions and then using the tree

to find neighboring partitions. Building many smaller indexes is

more efficient, mostly because each index operates on a smaller

data set and thus requires fewer (or even zero) external passes for

sorting. In our experiments, 1-for-each outperforms all-in-1
by ∼ 40% as shown in Figure 8. STITCH indexes faster than FLAT,

because virtually no time is required for creating a grid index on
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Figure 8: Overall time to index (left) and Index size (right).

the reference space and constant time is required for computing the

overlap between the grid cells and the data partitions. Therefore

STITCH spends only 1% of the time for linking the reference index

and the data sets while the remaining 99% is spent on partitioning

the data sets. GRID indexes the fastest because it simply partitions

the data uniformly and does not require an external sort.

Index Size. If we compare the storage space needed by all indexes

in each approach, we see that the majority of the space is taken

by the objects themselves (partitioned data sets), roughly 45 GB

for all 10 data sets. STITCH requires the least amount of space

(∼1 GB) to store the metadata information. Both FLAT all-in-1
and 1-for-each have virtually the same index structure and there-

fore require a similar amount of space - around 3GB for 10 data

sets while GRID does not need to store any index structure at all.

In terms of the space needed to store the objects, both GRID and

mainly STITCH introduce some empty space in the object pages,

requiring 16% and 31% more space compared to FLAT respectively.

In the case of STITCH, this extra space enables more fine-grained

filtering and thus results in faster overall query execution.

Index Update. Scientists often acquire more data of the phenom-

ena being studied. Providing indexing support for newly added

data sets is therefore important. We thus analyze the cost of adding

a new data set in each approach. We initially index 9 out of our

10 data sets, and measure the time for adding the 10th data set (of

size 4.9 GB). FLAT is designed for bulkloading and therefore it is

more efficient to re-build all-in-1 from scratch. 1-for-each only
requires to build the index for the new data set and is therefore

much cheaper as shown in Figure 9. STITCH needs to partition the

new data set and link the partitions to the reference index which is a

faster process than building the whole index in 1-for-each. Over-
all STITCH finishes the update about 35% faster than 1-for-each.
GRID is the fastest approach as it simply partitions the new data

set uniformly without the need to sort it first.

7.3 Sensitivity Analysis
In the following, we perform an analysis of STITCH to understand

the impact of different workload and configuration characteristics

on the performance. The following experiments are performed us-

ing the same query workload described in Section 7.1 and indexing

4 neuroscience data sets while querying all 4 of them.

Scaling with Data Set Size. In this experiment we execute the

same queries on data sets with increasing size and we study the

impact on the number of links between the reference space and the

Figure 9: Extending an existing index with a new data set.

Figure 10: Number of links (left) and Pages read per query
(right) for increasing data set sizes.

category partitions. We define three cases: (1) we index and query

successively four small sized data sets (a total size of 9 GB), each

one containing a small set of neurons, (2) we use four data sets

of medium size (18 GB in total) and (3) we use four big data sets

(40 GB in total) containing a large set of different types of neurons.

For a fair comparison, the granularity of the reference index is not

adjusted to the size of the data sets (the default configuration of

100
3
cells is used). As all the data sets are contained within the

same reference space, adding more neurons results in increasingly

denser data sets. The overlap between the grid cells and the category

partitions thus increases. As shown in Figure 10 (left), for a given

grid cell, there are more links to category partitions outside the

query range. The number of replicated links (links retrieved from

multiple grid cells) and the number of links that point to the actually

overlapping category partitions (hits) increase as well (because the

query size is constant). The right side of Figure 10 shows that as the

data set size increases, there are more objects in the query result,

and retrieving them becomes the dominant factor.

Grid Resolution. The number of grid cells has an impact on the

number of links that need to be retrieved from disk to evaluate a

query. When the grid resolution is too low, the grid cannot effec-

tively prune the links to the category partitions that fall outside the

query volume. Figure 11 shows that the amount of data retrieved

from the reference index (left-hand side) decreases as the resolution

increases from 100 to 160 cells per dimension. However, increasing

the resolution further does not help in reducing the amount of

retrieved data. The right-hand side of Figure 11 shows the impact

of the grid resolution on the category partitions. As the resolution

increases, Sliced-DOP leaves more empty space in the object pages

(i.e., creates category partitions with a smaller number of objects),

resulting in an overhead of up to 40% for 200 cells per dimension.
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Figure 11: Amount of retrieved metadata (left) and Percent-
age of empty space in object pages (right) for increasing grid
resolution.
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Figure 12: Number of links (left) and Pages read per query
(right) for increasing query volume.

Query Volume. In this experiment, we increase the volume of the

queries from 10
−6
% to 10

−4
% of the entire universe volume. Since

the grid resolution is fixed, when bigger queries are executed, an

increasing number of grid cells overlap the query. However, not all

the links inside those cells are pointing to a category partition that

overlaps the query. As Figure 12 shows, the increase in the number

of overlapping cells results in an increasing number of links that

do not overlap the query volume. The same figure (right) shows

that as the query volume (and the number of cells that overlap with

the query) increases, more pages are read for both metadata and

objects, but retrieving objects is the dominant factor.

8 DISCUSSION AND CONCLUSIONS
In this paper we identify the challenge of efficiently exploring

multiple spatial data sets with the same range query—a common

task across scientific applications. Not knowing a priori which data

sets will be queried makes it particularly challenging to accelerate

access: indexing all possible combinations of data sets is not feasible

as it takes too long and requires toomuch space leaving us to choose

between two extremes – indexing each data set individually and

using one index for all data sets. As we show, neither of the two

extremes is efficient: the first does not scale well with an increasing

number of queried data sets, and the second is inefficient when

only a small subset of the indexed data sets is queried.

Based on these key insights we develop STITCH, a novel disk-

based index that combines data-oriented partitioning with space-

oriented indexing. Using data-oriented partitioning for the data sets

we can effectively address skew in the distribution of spatial objects.

At the same time we refrain from using a hierarchical structure

to access the partitioned data sets (and thus avoid the associated

overhead) and instead link the data set partitions to a central space-

oriented index. Using space-oriented partitioning in the reference

space, we cover the entire universe of all categories without having

a priori knowledge of the data distribution, and thus ensure that all

category partitions (even those of future categories) are “stitched”

to at least one partition in the reference space. In particular, STITCH

employs a uniform grid for its efficiency in building, querying and

updating with new categories. Links are stored for all intersecting

pairs of grid cells with data set partitions. The only drawback is

that the grid resolution has to be defined statically. Alternatively,

other space-partitioning indexes could be used as the reference

index, such as octrees [10] or kd-trees [6].

Key to the approach is the use of Sliced Data-Oriented Parti-

tioning (Sliced-DOP): to avoid storing and ultimately following an

excessive number of links, the uniform grid guides the partitioning

of the data sets. Our extensive experimental analysis shows that

with these measures our approach outperforms the state-of-the-art

by up to a factor of 12.3 for a real neuroscience workload.
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