
Multi-Backend Zonal Statistics Execution with Raven
Gereon Dusella

Technische Universität Berlin
Germany

gereon.dusella@tu-berlin.de

Haralampos Gavriilidis
Technische Universität Berlin

Germany
gavriilidis@tu-berlin.de

Laert Nuhu∗
Deutsche Kreditbank AG

Germany
laertnuhu@gmail.com

Volker Markl
Technische Universität Berlin

Germany
volker.markl@tu-berlin.de

Eleni Tzirita Zacharatou
IT University of Copenhagen

Denmark
elza@itu.dk

ABSTRACT
The recent explosion in the number and size of spatial remote sens-
ing datasets from satellite missions creates new opportunities for
data-driven approaches in domains such as climate change monitor-
ing and disaster management. These approaches typically involve a
feature engineering step that summarizes remote sensing pixel data
located within zones of interest defined by another spatial dataset,
an operation called zonal statistics. While there exist several spa-
tial systems that support zonal statistics operations, they differ
significantly in terms of interfaces, architectures, and algorithms,
making it hard for users to select the best system for a specific
workload. To address this limitation, we propose Raven, a zonal sta-
tistics framework that provides users with a unified interface across
multiple execution backends, while facilitating easy benchmarking
and comparisons across systems. In this demonstration, we show-
case several aspects of Raven, including its multi-backend execution
environment, domain-specific declarative language, optimization
techniques, and benchmarking capabilities.
ACM Reference Format:
GereonDusella, HaralamposGavriilidis, Laert Nuhu, VolkerMarkl, and Eleni
Tzirita Zacharatou. 2024. Multi-Backend Zonal Statistics Execution with
Raven. In Proceedings of the ACM Conference on Management of Data (SIG-
MOD ’24). ACM, New York, NY, USA, 4 pages. https://doi.org/XXXXXXX

1 INTRODUCTION
Over the past decade, the launch of an ever-increasing number of
satellites has led to the accumulation of unprecedented volumes
of Earth Observation (EO) data [1, 6, 8]. For example, the Sentinel
archive alone contains Earth images captured by eight satellites,
amounting to 6.64 petabytes [6]. The efficient processing of EO data
offers an opportunity to substantially improve our understanding
of our planet’s state and the changes that occur on it [2, 11, 14, 17].

To extract meaningful features from EO imagery that can be
used to train ML models, it is often necessary to compute aggregate
∗Work performed while at Technische Universität Berlin

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’24, June 09–15, 2024, Santiago, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX

information for image pixels within specific zones of interest de-
fined by another spatial dataset [7], a process commonly known as
zonal statistics (ZS). Remote sensing images are available in raster
format, a multidimensional array representation where each pixel
corresponds to a geographical region, while the pixel value reflects
some characteristics of that region. However, spatial datasets defin-
ing zones of interest, like city boundaries from OpenStreetMap [13],
are often in vector format, representing geographical features with
points, lines, and polygons. As a result, computing zonal statis-
tics requires combining heterogeneous raster and vector datasets.
For example, to train an ML model for monitoring and predicting
changes in vegetation health in different land plots over time, one
needs to generate aggregated (e.g., mean and median) Normalized
Difference Vegetation Index (NDVI) statistics as features for each
land plot [10]. This feature engineering process requires joining
remote sensing imagery data (raster) with land plot data (vector).

Current spatial systems for zonal statistics confront users with a
jungle of interfaces, capabilities, and requirements. This plethora of
different systems poses challenges in selecting the best system for a
given workload. Typically, spatial systems lack support for joining
raster and vector data (e.g., RasDaMan [3], Apache Sedona [18]),
except for Beast [9] and PostGIS [15]. As a result, users might
need to rasterize vector datasets or vectorize raster datasets before
they can join them. Furthermore, they might need to perform file
format conversions, given that most systems support only a limited
number of file formats. The diversity of interfaces across spatial
systems poses additional challenges. First, it locks users into their
initial system choice, due to the significant effort required to rewrite
applications. Second, it introduces a substantial barrier when testing
different systems for optimal performance. For example, while both
Beast and PostGIS support raster and vector data, Beast employs
a map-reduce-like API, while PostGIS offers an SQL-like API. To
provide a good user experience, avoid vendor lock-in, and optimize
performance, there is a need to abstract ZS operations and enable
their unified execution across multiple spatial systems.

To address the challenges in processing zonal statistics over large-
scale heterogeneous datasets, we developed Raven [16], a zonal
statistics framework that offers users a unified interface across mul-
tiple spatial systems serving as execution backends. Raven exposes
a DSL tailored for zonal statistics, abstracts system-specific details,
and optimizes execution. Furthermore, it supports effortless system
benchmarking, assisting users in selecting the most efficient system
for their workload. To the best of our knowledge, Raven is the first
system for unified spatial analytics. Previous efforts to unify data

https://orcid.org/0009-0008-9363-3072
https://orcid.org/0000-0002-3910-5059
https://orcid.org/0000-0001-8873-5455
https://doi.org/XXXXXXX
https://doi.org/XXXXXXX

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Dusella et al.

analytics focus on integrating structured and semi-structured data
with SQL [5, 19] and map-reduce-like interfaces [4]; however, these
efforts do not include support for spatial operations.

In this demonstration, we first aim to illustrate the complexity
of implementing zonal statistics in different spatial systems. We let
the audience interact with the systems and showcase their diversity
in terms of interfaces, capabilities, and requirements. We then dive
into Raven’s internals, enabling the audience to implement a zonal
statistics task within our tool. We discuss how Raven translates this
task into different system APIs, performs necessary pre-processing,
and manages the execution lifecycle. Furthermore, we highlight
how Raven guides users in selecting the best system for their task
by executing this task on multiple state-of-the-art spatial systems
and generating performance metrics that offer insights into perfor-
mance variations among these systems. Finally, we highlight the
benefits of Raven as middleware for applications by implementing
an exemplary application and letting users manipulate different
parameters and datasets interactively.

2 RAVEN OVERVIEW
Today’s data scientists face multiple challenges when implement-
ing zonal statistics, due to the varying interfaces and configuration
parameters exposed by today’s spatial systems, the varying pre-
processing steps that these systems require, and their divergent
runtime performance capabilities. In response to these challenges,
Raven aims to 1) offer an easy-to-use zonal statistics interface and
2) highlight performance differences in spatial systems. To achieve
this, Raven exposes a declarative zonal statistics interface based on
a DSL that we developed. Using this DSL, Raven can transparently
optimize and execute a given zonal statistics task onmultiple spatial
systems. As a result, Raven provides system independence thereby
helping users avoid vendor lock-ins. Furthermore, by automating
execution and providing detailed performance results, Raven simpli-
fies the selection of the most efficient system for a given workload.
In the following, we give a brief overview of Raven’s components.

Data Scientist

Preprocessor

System
Comparison

Instructions

SDMSSpatial System

Datasets

Tables,
Graphs DatasetsDatasetsMetrics

ZS Exp
DB

MetricsExperiment
Analyzer

Capabilities

ZS Results Results Table

Pipeline
PlannerQuery

Pipeline
Repr

Pipeline
Manager

SpS-Connector

Execution Interface

IR Converter

Metrics

Init
SpS-Query

Pipeline Configs

Analysis

Figure 1: Raven Architecture

2.1 Architecture Overview
Figure 1 presents Raven’s architecture. Raven takes as input a
zonal statistics task expressed in its DSL (the query) and relies on
its Pipeline Planner for optimization. Additionally, the Pipeline
Planner takes as input a “System Capabilities” file, specifying the
operations supported by the execution backends. Based on this
information, it determines the need for pre-processing steps, such
as format or Coordinate Reference System (CRS) conversions, and

1 # Datasets definition
2 zs_result = ZSGen.build(
3 raster="/data/sentinel2a_mol_band9",
4 vector="/data/ALKIS_bezirk_MOL")
5 # Aggregation operations
6 .group("oid")
7 .summarize({"max": ZSGen.MAX, "avg": ZSGen.AVG})
8 .join_using(ZSGen.INTERSECT)
9 # Systems
10 .system([ZSSystem.PostGIS(params),...])

Listing 1: A simple ZS Task in Raven’s DSL

selects the appropriate join type. The Pipeline Planner outputs an
Abstract Syntax Tree (AST) including all required operations, from
pre-processing to joining and aggregation. Then, the Pipeline
Manager is responsible for assembling and executing the pipeline.
Here, Raven relies on (system-developer-provided) implementa-
tions of the Execution Interface, which includes a IR (Internal
Representation) Converter and a SpS (Spatial System) Connector.
The IR Converter translates Raven’s AST into system-specific code
using parameterized templates, and the SpS-Connector enables
execution on the underlying systems and retrieving the results.
Raven stores execution metrics, e.g., runtime and resource con-
sumption for each step, in its experiment database, which the
Experiment Analyzer uses to gain insights into the execution.

2.2 Raven’s Domain-Specific Language
Performing zonal statistics on raw raster and vector data involves
multiple steps. First, data require pre-processing to handle varia-
tions in format, Coordinate Reference Systems (CRSs), and stan-
dards governing geometry representation and interpretation. Sec-
ond, data might require filtering based on specified conditions. The
next processing stage involves joining and aggregating the data.
In this stage, one can apply various interpretations for the join
condition and implement optimizations, such as tuning tile sizes.1
To abstract these steps, we designed a simple DSL for Raven, al-
lowing users to easily express zonal statistics on both raster and
vector datasets. The DSL exposes primitives for zonal statistics com-
putation, such as defining transformations, filter predicates, and
join conditions. Listing 1 shows an example. Here, the user loads a
raster and a vector dataset (Lines 2–4), selects a grouping key, two
aggregate functions, and a join method (Lines 6–8), and chooses
PostGIS for execution (Line 10). Note that, for brevity, we exclude
DSL primitives related to other parameters and spatial systems.

Subsequently, Raven converts programs expressed in its DSL
to system-specific implementations, optimizes them, and executes
them across the user-specified spatial systems as described next.

2.3 Zonal Statistics Pipelines
TheAST generated by Raven’s Pipeline Planner (cf. Figure 1) en-
capsulates the end-to-end processing of a zonal statistics task. This
includes pre-processing operations, such as changing format to sup-
port loading into the given system, aligning CRSs, and filtering the

1Tiles are used to divide raster data into smaller chunks.

Multi-Backend Zonal Statistics Execution with Raven SIGMOD ’24, June 09–15, 2024, Santiago, Chile

Figure 2: Raven’s Config. Panel Figure 3: Zonal Statistics Pipeline Viewer Figure 4: Benchmark Results

datasets, as well as performing the join and aggregation. Raven cur-
rently optimizes the execution plan using simple heuristics, such
as reducing redundant data loading by filter pushdown.

The Pipeline Manager (cf. Figure 1) transforms the AST into
system-specific code. To achieve this, it employs parameterized tem-
plates in the APIs of the supported backend systems through the
IR Converter. System developers have to provide these templates
when integrating a system into Raven. Finally, Raven executes
the system-specific code through the SpS-Connector. In our refer-
ence implementation, we support pre-processing using GDAL and
zonal statistics execution on Beast [9], PostGIS [15], RasDaMan [3],
heavy.ai [12], and Sedona [18]. The Pipeline Manager composes the
pipeline by filling the templates with information from the AST,
and coordinates the execution.

2.4 Benchmarking Mode
The performance of zonal statistics tasks in different spatial systems
can vary significantly depending on data and workload. Raven not
only allows users to seamlessly execute zonal statistics across mul-
tiple systems with diverse configurations, but also enables them to
benchmark these systems. To facilitate benchmarking, Raven fea-
tures a dedicated benchmarking mode. This mode allows users to
execute multiple pipelines and produce detailed performance plots,
e.g., breakdown performance of different pipeline stages.These plots
enable Raven’s users to compare different systems and parameter
combinations. As a result, users can gain insights into potential bot-
tlenecks and enhance system performance by fine-tuning available
parameters. Overall, Raven’s integrated benchmarking component
provides valuable tools for optimizing zonal statistics tasks across
diverse spatial systems.

2.5 Integration with QGIS
To enhance the interactivity of our demonstration, we seamlessly
integrated Raven into QGIS [20]. This integration enables users
to visually formulate a query through a user-friendly UI, which

is then translated into Raven’s IR AST. The UI automatically pulls
information about the loaded data (or layers) from QGIS. Further-
more, users can specify other processing parameters, such as the
type of vectorization applied. When a user selects multiple sys-
tems or multiple conflicting processing parameters (e.g., different
tile sizes), Raven automatically switches to benchmarking mode.
The benchmarking results are displayed in the main QGIS UI after
Raven concludes its benchmark run.

In addition to the UI, we integrated Raven into the Processing
API of QGIS. This API empowers users to build complex pipelines
with multiple inputs, outputs, and parameters. Consequently, users
can harness Raven through QGIS to tackle more complex problems
and execute recurring tasks effortlessly.

3 DEMONSTRATION PLAN
The goal of this demonstration is twofold. First, it aims to show
the intricacy of implementing zonal statistics using state-of-the-
art spatial data management systems. Second, it aims to showcase
the capabilities of Raven. Specifically, we show its ease of use for
expressing zonal statistics and its practical utility for spatial appli-
cations. Furthermore, we show how Raven assists data scientists in
selecting the most efficient spatial system for a given task, leverag-
ing its benchmarking mode. Attendees can experience a live demo
of Raven using the QGIS UI. The UI runs on a local laptop, where
Raven can be run directly. For scenarios involving large datasets, the
laptop connects to a remote server hosting Raven. In the following,
we describe our demonstration scenarios.

3.1 Exploring State-of-the-Art Systems
First, we introduce the audience to the fundamental characteristics
of geospatial data, emphasizing the differences between raster and
vector data. Then, we describe the task of zonal statistics and ex-
plain how raster data can be combined with vector data. Finally, we
show how users implement zonal statistics tasks in state-of-the-art

SIGMOD ’24, June 09–15, 2024, Santiago, Chile Dusella et al.

Figure 5: Zonal Statistics Output

systems by presenting an example task, e.g., computing NDVI sta-
tistics, and demonstrating its implementation using the interfaces
of various systems, e.g., Beast, PostGIS, and RasDaMan.

3.2 Implementing Zonal Statistics with Raven
Our second demonstration scenario aims to familiarize the audi-
ence with Raven. For this purpose, we guide the audience through
Raven’s DSL and show its ease of use for implementing zonal sta-
tistics tasks. Leveraging the integration of Raven with QGIS (cf.
Section 2.5), users can seamlessly compose zonal statistics tasks
in Raven’s DSL through a GUI, as shown in Figure 2. In 1 , users
can choose among available raster and vector datasets and apply
filter predicates. In 2 , users can specify values for different pro-
cessing and optimization parameters. Then, in 3 , users can define
evaluation parameters mostly relevant for Raven’s benchmarking
mode. In this scenario, we also discuss how Raven abstracts the
APIs of different spatial systems, translates zonal statistics tasks
into these APIs, performs pre-processing of raw raster and vector
data, and efficiently orchestrates the execution lifecycle. To that
end, we use the ZS Pipeline Viewer (c.f. Figure 3) that visualizes
the generated query plan for each system based on Raven’s IR. The
visualization uses different colors to highlight different types of
operations, i.e., pre-processing, ingestion, and actual execution.

3.3 Benchmarking Zonal Statistics with Raven
In our third demonstration scenario, we aim to illustrate the perfor-
mance discrepancies among state-of-the-art spatial data manage-
ment systems when executing a zonal statistics task. Therefore, we
leverage Raven’s benchmarking mode to execute a given task across
multiple systems and explore different configurations. Throughout
the entire execution lifecycle, Raven gathers statistics that pro-
vide valuable information on each processing stage: from format
conversions to CRS alignment, data filtering, and finally joining
raster and vector data. To show the performance characteristics
of different systems, we run pre-defined zonal statistics tasks and
discuss the performance breakdown graphs generated by Raven (cf.
Figure 4). Additionally, users can define their own zonal statistics
tasks and benchmarking parameters using Raven’s configuration

panel, thereby gaining a better understanding of how different set-
tings influence the performance of different systems. Overall, in
this scenario, we demonstrate Raven’s versatility in benchmark-
ing spatial data management systems and emphasize its utility in
guiding users to select the right system for their needs.

3.4 Raven as an Application Backend
In our fourth demonstration scenario, we want to show how Raven
can be integrated with current spatial applications. For this purpose,
we describe our integration with QGIS.This integration allows com-
puting zonal statistics on any available underlying spatial system
and then returning the result to QGIS to produce different data
visualizations. In this demonstration scenario, attendees can ac-
tively interact with Raven through the GUI and visually explore
raster and vector data, as depicted in Figure 5. We will supply raster
and vector datasets, but we also encourage attendees to bring their
datasets that we can explore with Raven.

4 CONCLUSION
This demonstration shows the necessity and advantages of a unified
declarative framework for implementing and analyzing zonal sta-
tistics tasks. The source code of Raven is available on GitHub [16].

REFERENCES
[1] European Space Agency. 2024. Copernicus Data Space Ecosystem. https:

//dataspace.copernicus.eu/
[2] Ahmet Kerem Aksoy, Pavel Dushev, Eleni Tzirita Zacharatou, Holmer Hemsen,

Marcela Charfuelan, Jorge-ArnulfoQuiané-Ruiz, BegümDemir, and Volker Markl.
2022. Satellite image search in AgoraEO. PVLDB 15, 12 (2022), 3646–3649.

[3] Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Norbert
Widmann. 1998. The multidimensional database system RasDaMan. In Proc.
SIGMOD. 575–577.

[4] Kaustubh Beedkar, Bertty Contreras-Rojas, Haralampos Gavriilidis, Zoi Kaoudi,
Volker Markl, Rodrigo Pardo-Meza, and Jorge-ArnulfoQuiané-Ruiz. 2023. Apache
Wayang: A Unified Data Analytics Framework. SIGMOD Rec. 52, 3 (2023).

[5] Michael J Carey et al. 1995. Towards heterogeneous multimedia information
systems: The Garlic approach. In Proc. RIDE-DOM.

[6] Adriana Grazia Castriotta. 2023. Copernicus Sentinel Data Access Annual Report
Y2022. Technical Report 1. European Commission. 119 pages.

[7] Russell G. Congalton and Kate Green. 2020. Assessing the Accuracy of Remotely
Sensed Data: Principles and Practices. CRC Press, Taylor & Francis Group.

[8] Arne de Wall, Björn Deiseroth, Eleni Tzirita Zacharatou, Jorge-Arnulfo Quiané-
Ruiz, Begüm Demir, and Volker Markl. 2021. Agora-EO: A Unified Ecosystem for
Earth Observation – A Vision for Boosting EO Data Literacy –. In Proc. Big Data
from Space (BiDS).

[9] Ahmed Eldawy, Vagelis Hristidis, Saheli Ghosh, Majid Saeedan, Akil Sevim, A.B.
Siddique, Samriddhi Singla, Ganesh Sivaram, Tin Vu, and Yaming Zhang. 2021.
Beast: Scalable Exploratory Analytics on Spatio-temporal Data. In Proc. CIKM.

[10] Lukas Kondmann et al. 2021. DENETHOR: The DynamicEarthNET dataset for
Harmonized, inter-Operable, analysis-Ready, daily crop monitoring from space.
In Proc. NeurIPS Datasets and Benchmarks.

[11] Stefanie Holzwarth et al. 2020. Earth Observation Based Monitoring of Forests
in Germany: A Review. Remote Sensing 12, 21 (2020), 3570.

[12] HEAVY.AI. 2024. https://heavy.ai/
[13] OpenStreetMap. 2024. https://www.openstreetmap.org.
[14] Paul J. Pinter, Jr., Jerry L. Hatfield, James S. Schepers, Edward M. Barnes, M. Susan

Moran, Craig S.T. Daughtry, and Dan R. Upchurch. 2003. Remote Sensing for
Crop Management. Photogrammetric Engineering & Remote Sensing 69, 6 (2003).

[15] PostGIS. 2023. https://postgis.net/
[16] Raven. 2024. https://github.com/polydbms/RaVeN
[17] Jerry C. Ritchie, Paul V. Zimba, and James H. Everitt. 2003. Remote Sensing

Techniques to Assess Water Quality. Photogrammetric Engineering & Remote
Sensing 69, 6 (2003), 695–704.

[18] Apache Sedona. 2024. https://sedona.apache.org/
[19] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,

Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al.
2019. Presto: SQL on everything. In Proc. ICDE. 1802–1813.

[20] QGIS Geographic Information System. 2024. http://qgis.org

https://dataspace.copernicus.eu/
https://dataspace.copernicus.eu/
https://heavy.ai/
 https://www.openstreetmap.org
https://postgis.net/
https://github.com/polydbms/RaVeN
https://sedona.apache.org/
http://qgis.org

	Abstract
	1 Introduction
	2 Raven Overview
	2.1 Architecture Overview
	2.2 Raven's Domain-Specific Language
	2.3 Zonal Statistics Pipelines
	2.4 Benchmarking Mode
	2.5 Integration with QGIS

	3 Demonstration Plan
	3.1 Exploring State-of-the-Art Systems
	3.2 Implementing Zonal Statistics with Raven
	3.3 Benchmarking Zonal Statistics with Raven
	3.4 Raven as an Application Backend

	4 Conclusion
	References

