
The VLDB Journal (2025) 34:8
https://doi.org/10.1007/s00778-024-00887-4

REGULAR PAPER

Raster interval object approximations for spatial intersection joins

Thanasis Georgiadis1 · Eleni Tzirita Zacharatou2 · Nikos Mamoulis1

Received: 1 January 2024 / Revised: 18 September 2024 / Accepted: 19 November 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Spatial join processing techniques that identify intersections between complex geometries (e.g., polygons) commonly follow a
two-step filter-and-refine pipeline. The filter step evaluates the query predicate on the minimum bounding rectangles (MBRs)
of the geometries, while the refinement step eliminates false positives by applying the query on the exact geometries. To
accelerate spatial join evaluation over complex geometries, we propose a raster intervals approximation of object geometries
and introduce a powerful intermediate step in the pipeline. In a preprocessing phase, our method (i) rasterizes each object
geometry using a fine grid, (ii) models groups of nearby cells that intersect the polygon as an interval, and (iii) encodes each
interval with a bitstring capturing the overlap of each cell in it with the polygon. Going one step further, we improve our
approach by approximating each object with two sets of intervals that succinctly capture the raster cells that (i) intersect
with the object and (ii) are fully contained within the object. Using this representation, we show that we can verify whether
two polygons intersect through a sequence of linear-time joins between the interval sets. Our approximations are effectively
compressible and customizable for partitioned data and polygons of varying sizes, rasterized at different granularities. Finally,
we propose a novel algorithm that computes the interval approximation of a polygon without fully rasterizing it first, rendering
the computation of approximations orders of magnitude faster. Experiments on real data demonstrate the effectiveness and
efficiency of our proposal over previous work.

1 Introduction

We study the problem of computing the spatial intersection
join between two spatial object collections R and S, which
identifies all pairs of objects (r , s), r ∈ R, s ∈ S such that
r shares at least one common point with s. Besides being a
common operation in geographic information systems (GIS),
the spatial intersection join finds a wide range of applications
in geo-spatial interlinking [32], GeoSPARQL queries on
RDF data stores [47], interference detection between objects
in computer graphics [36], and suggesting synapses between
neurons in neuroscience models [29]. Recently, there has
been a growing interest in spatial query evaluation over com-

B Nikos Mamoulis
nikos@cs.uoi.gr

Thanasis Georgiadis
ageorgiadis@cs.uoi.gr

Eleni Tzirita Zacharatou
elza@itu.dk

1 Department of Computer Science and Engineering,
University of Ioannina, Ioannina, Greece

2 IT University of Copenhagen, Copenhagen, Denmark

plex object geometries, such as polygons [14, 15, 22, 28, 31,
37, 46, 51–53].

A naive way to evaluate the join is to run an intersection
test algorithm from computational geometry for each pair
(r , s) in R × S. However, this method is extremely expen-
sive, since (i) the number |R × S| of pairs to be tested can
be huge and (ii) for each pair the test takes O(n log n) time
[9]. To mitigate (i), the join is evaluated in two steps. Pro-
vided that the minimum bounding rectangles (MBRs) of the
objects are available (and possibly indexed), in the filter step,
an efficient MBR-join algorithm [10, 49] is used to find the
pairs of objects (r , s) ∈ R × S such that MBR(r) inter-
sects with MBR(s). In the refinement step, for each pair that
passes the filter step, the expensive intersection test on the
exact object geometries is applied. To further reduce the num-
ber of pairs needing refinement, intermediate filters can be
added to the pipeline [9, 58]. The main idea is to use object
approximations, in addition to the MBR, that can help to
quickly determine whether a candidate pair (r , s) that passes
the MBR filter is (i) a sure result, (ii) a sure non-result, or
(iii) an indecisive pair, for which we still have to apply the
geometry intersection test. Brinkhoff et al. [9] investigated
the use of different object approximations (e.g., the convex

0123456789().: V,-vol 123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 2 of 25 T. Georgiadis et al.

hull) to be used as subsequent filters after MBR-intersection.
Zimbrao and de Souza [58] proposed a more effective raster
object approximation, where each object MBR is partitioned
using a grid and the object is approximated by the percent-
ages of grid cell areas that the object overlaps. This approach
has several limitations. First, the raster object representa-
tions may occupy a lot of space. Second, the approximations
of two candidate objects may be based on grids of different
scales; their re-scaling and subsequent comparison can be
quite expensive. Third, the cost of comparing two rasters in
order to filter a candidate pair is linear to the number of cells
in the rasters.

In a preliminary version of our work [18], we introduce
Raster Intervals (RI); a raster approximation technique for
polygonal objects, which does not share the drawbacks of
[58] and reduces the end-to-end spatial join cost up to 10
times, when we use it as a pre-refinement, intermediate fil-
ter. Our technique uses a global fine grid to approximate
all objects, hence, no re-scaling issues arise. In addition, RI
encodes each cell by a 3-bit sequence; whether two objects
overlap in a cell can be determined by bit-wise ANDing the
corresponding sequences. Finally, RI models the set of cells
that approximate an object o by a sorted list of raster inter-
vals, determined by the Hilbert curve order of continuous
cells in o’s representation. For each such interval, we unify
in a bitstring all 3-bit sequences of the included cells. Object
pair filtering is then implemented as amerge join between the
corresponding raster interval lists. For each pair of intersect-
ing intervals, the sub-bitstrings corresponding to the common
cells are ANDed to find whether there is at least one cell
wherein the polygons overlap.

Despite its effectiveness and efficiency compared to pre-
vious filters, RI has a relatively high preprocessing cost and
occupies significant space. In this extendedversionof [18]we
propose APRIL (Approximating Polygons as Raster Interval
Lists), a significant improvement over RI. Unlike [18, 58]
that divide the raster cells intersecting a polygon into three
classes, APRIL uses only two cell classes, which improves
storage efficiency and accelerates the intermediate filter. Sec-
ond, the main novelty of APRIL lies in the way it represents
objects using two lists of intervals: the first (A-list) includes
all cells, regardless of their class, and the second (F-list)
includes only cells that are fully covered by the object. The
intermediate filter is then implemented as a sequence of three
simplemerge joins between the sorted interval lists of a given
object pair. The first join, performed between the two A-
lists, effectively identifies all true negatives. The last two
joins, performed between one object’s A-list and the other
object’s F-list, identify true positives. Since APRIL does not
explicitly store or encode cell-class information and does not
perform cell-specific comparisons, it is significantly faster
than previous raster approximations. Finally, APRIL applies
a compression technique based on delta encoding to greatly

reduce the space required to store the interval lists. As a
result, APRIL approximations may require even less space
than object MBRs, allowing them to be stored and processed
in main memory. Moreover, APRIL’s compression scheme
allows partial, on-demand decompression of interval lists
during interval join evaluation.

In addition to improving RI to APRIL, in this paper we
show the generality of APRIL in supporting spatial selec-
tion queries, spatial within joins, and joins between polygons
and linestrings. Furthermore, we present a space partition-
ing approach, which increases the resolution of the raster
grid and achieves more refined object approximations as
necessary, leading to fewer inconclusive cases and, there-
fore, faster query evaluation. We also investigate options
for defining and joining APRIL approximations of different
polygons at different granularities based on their geometries.
Finally, a significant contribution of this paper is a novel, one-
step “intervalization” algorithm that computes the APRIL
approximation of a polygon without having to rasterize it in
full. We show that this method is orders of magnitude faster
compared to other rasterization approaches on CPU [46, 58].

The rest of the paper is structured as follows: Sect. 2 pro-
vides the necessary background. In Sect. 3, we introduce
our raster approximations (RI) technique as an intermedi-
ate filter for spatial intersection joins. Section4 introduces
APRIL, our improved raster intervals representation, detail-
ing its features, construction, and usage. Section5 presents
customization options for tuning APRIL to specific system
or dataset requirements. In Sect. 6, we study the efficient
construction of APRIL approximations. Section7 presents
our experiments that verify APRIL’s performance. Section8
reviews related work, and finally, Sect. 9 concludes the paper
and offers suggestions for future work.

2 Background

Figure1 illustrates the spatial intersection join pipeline. An
MBR-join algorithm takes as input theMBR approximations
of objects to identify all pairs of objects that intersect (filter
step) [21, 49]. Before accessing and comparing the exact
object geometries for each such candidate pair, in an inter-
mediate step, more detailed object approximations (than the
MBR) are used to verify (fast) whether the pair is a sure result
(true hit) or a sure non-result (false hit), or we cannot decide
based on the approximations [9, 58]. Finally, if the pair is still
a candidate, it is passed to the refinement stepwhere the exact
geometries are accessed and an (expensive) algorithm from
computational geometry [35] is run to determine whether the
pair is a result. Most previous work focused on the filter step
[10, 21, 29, 49]. However, the refinement step dominates the
overall cost, as discussed in the Introduction. The interme-

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 3 of 25 8

Fig. 1 Spatial intersection join pipeline [9]

Fig. 2 Four types of cells in a raster approximation [58]

diate step using additional object approximations has been
proved valuable toward reducing the overal join cost [9].

Zimbrao and de Souza [58] introduced an effective inter-
mediate filter by imposing a grid over each object’s MBR.
The cells of the grid comprise the raster approximation of the
object. Each cell belongs to one of the following four types:
full (the object completely covers the cell), strong (the object
covers more than 50% of the cell), weak (the object covers
at most 50% of the cell), or empty (the object is disjoint with
the cell). Figure2 shows an example.

To create the raster approximation (RA) of a polygon, a
grid of at most K square cells is defined. The side of each cell
should be ω2k , for some k ≥ 0, where ω is a minimum cell
side (unit). In addition, the coordinates of each cell should
be multiples of ω2k .

For a pair (r , s) of candidate objects, the cells in their
approximations RA(r) and RA(s) that overlap with their
common MBR are identified and the remaining ones are
ignored. If the cells of RA(r) are smaller than the cells of
RA(s), groups of neighboring cells in RA(r) are combined
to infer the type of a larger cell that is perfectly aligned with
a cell of RA(s). Re-scaling is expensive, results in accuracy
loss, and reduces the effectiveness of the filter, rendering RA
useful mainly for polygons of similar size, which is rarely
the case in real-world data.

After re-scaling, the common cells in the two raster
approximations are examined and, for each such cell, we
use the cell’s types in the two approximations to conclude
whether the objects intersect in the cell, according to Table
1. Specifically, if at least one of the two types is empty, the
objects definitely do not intersect in the cell. If at least one of
the two types is full and the other is not empty or both types

Table 1 Do two objects intersect in a cell, based on the cell’s types in
the two raster approximations? [58]

Empty Weak Strong Full

Empty No No No No

Weak No Inconclusive Inconclusive Yes

Strong No Inconclusive Yes Yes

Full No Yes Yes Yes

are strong, then the objects definitely intersect in the cell. In
all other cases, we cannot conclude whether the objects inter-
sect in the cell. If we find at least one cell where the objects
intersect, the pair is directly reported as a spatial join result
(true hit). If the objects do not intersect in any common cells,
the pair is pruned (false hit). If we cannot conclude about the
object pair, the refinement step should be applied.

3 Raster intervals

We propose a new framework for the intermediate step of
spatial joins, which builds upon but is significantly more
effective than, the raster approximation technique of previ-
ous work [58]. Our approach has three important differences:
(i) we use the same global (and fine-grained) grid to rasterize
all objects; (ii) we use bitstring representations for the cell
types of object approximations; and (iii) we represent the set
of all non-empty cells of each object as a sorted list of inter-
vals paired with binary codes. In this section, we present in
detail the steps that we follow in order to generate the raster
intervals approximation for each object.

3.1 Object rasterization and raster encoding

We superimpose over the entire data space (e.g., the map) a
2N × 2N grid. For each data object o, we identify the set of
cells Co that the object intersects and use this set to approxi-
mate o. Each cell inComaybelong to three types: full, strong,
orweak; as opposed to [58], we do not include empty cells in
Co. To compute Co for each object and the type of each cell,
we apply the algorithm of [58]. In a nutshell, the algorithm
first identifies the grid columns (stripes) that overlap with o.
It clips the object in each stripe and then runs a plane-sweep
algorithm along the stripe to identify the cells and the type
of each cell.

Furthermore, we encode the three types of cells that we
are using, as shown in Table 2. Note that we use a different
encoding for the cell types depending on whether the object
comes from join input R or S. This encoding has two impor-
tant properties. First, if for two objects r ∈ R and s ∈ S and
for a cell c, the bitwise AND of the codes of r and s in cell c
is non-zero, then we are sure that r and s intersect in cell c.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 4 of 25 T. Georgiadis et al.

Table 2 3-bit type codes for
each input dataset

Input R Input S

Full 011 101

Strong 101 011

Weak 100 010

Fig. 3 The Hilbert curve cell enumeration and interval generation for
a polygon in a 8 × 8 space

Indeed, this corresponds to the case where at least one type
is full or both are strong. If the logical AND is 0, we cannot
be sure whether r intersects s in c.

The second property of the encoding is that it allows us to
swap the roles of R and S in the join, if necessary. Specifi-
cally, the code for a cell c of an object in one join input (e.g.,
R) can be converted to the code for c if the object belonged
to the other join input (e.g., S) by XORing the code with the
mask m = 110. For example, 011, the R-encoding of full
cells, after bitwise XORing with m, becomes 101, i.e., the
S-encoding of full cells. This is important for the case where
the rasterization of a dataset has been precomputed before
the join, according to the R-encoding and we want to use the
dataset as the right join input S. XORing can be done on-the-
fly when we apply our filter, as we explain in Sect. 3.3, with
insignificant cost.

3.2 Intervalization

We use the Hilbert curve [20] to order the cells in the 2N ×
2N grid. Hilbert curve is a well-known space-filling curve
that preserves spatial proximity. Hence, each cell is mapped
to a value in [0, 22N − 1]. By this, the set of cells Co that
intersect an object o can be represented as a list of intervals
Lo formed by consecutive cells inCo according to theHilbert
order. Figure3 exemplifies the intervalization for a polygonal
object o in a 23×23 space. The cells are marked according to
their Hilbert order and shaded based on their type. There are
in total 36 cells in Co, which are represented by 7 intervals.
To intervalize Co, we sort the cells there in Hilbert order and
scan the sorted array, merging cells of consecutive cells into
the current interval. The cost for this is O(|Co| log |Co|).

For each interval in Lo, during the interval construction,
we concatenate the bitwise representations of the cells in
their Hilbert order, to form a single code for the entire inter-
val. This allows us to replace the set Co of cells that intersect
an object o by Lo. For example, assume that the polygon of
Fig. 3 belongs to the left join input R. We replace cells 9,
10 and 11 in Co with codes 100, 101 and 100, respectively,
by interval [9, 12) with binary code 100101100, as shown in
the figure. This helps us to greatly reduce the space require-
ments for the rasterized objects. In addition, as we will show
next, we save many computations while verifying a pair of
objects, because we can apply the bitwise AND for multi-
ple cells simultaneously. The resulting raster intervals (RI)
approximation of each object is a sequence of 〈st, end, code〉
triples (ordered by st), where [st, end] is an interval in the
Hilbert curve space and code is a bitstring that encodes the
cell types in the interval.
Practical considerations A larger value for N results in a
finer-grained grid and thus more accurate approximations.
Moreover, a polygon rasterizedwith higher granularity has an
increased probability to have completely covered cells (i.e.,
type full), which increases the chances of the intermediate
spatial join filter to identify a true hit. At the same time, a
large N requires more space for storing the endpoints of the
intervals in Lo. We choose N = 16, which results in a grid
with a fine granularity; in addition, the Hilbert order of cells
(i.e., the interval endpoints) can be stored as 32-bit unsigned
integers. As each cell in an interval contributes three bits
to the interval’s concatenated binary code, for a [st, end)

interval, we need �(end−st)∗3/8� bytes to encode its cells.
We may opt to compress binary codes consisting of many
bytes and the RI approximation of an object, overall.

3.3 Intermediate filter

For a join candidate pair (r , s), r ∈ R, s ∈ S which is pro-
duced by the MBR-join algorithm, our objective is to use the
raster intervals approximations RI (r) and RI (s) of r and s
to verify fast whether r and s definitely intersect, (ii) r and s
definitely do not intersect, or (iii) we cannot conclude about
the intersection of r and s, based on their RIs. This is done
via our RI-join procedure (Algorithm 1).

RI-join merge-joins the sorted interval lists RI (r) and
RI (s), denoted by X and Y in the pseudocode, respectively,
and identifies pairs (Xi ,Y j) of intervals that overlap; i.e.,
Xi and Y j include at least one common cell. For each such
pair, it is possible to determine whether (r , s) is a true hit
(i.e., a spatial join result) and avoid sending the pair to the
refinement step. Specifically, if in at least one of the com-
mon cells of Xi and Y j the logical AND of the cell codes
is non-zero, we have a sure true hit and we do not need to
continue the RI-join. Having the codes of the cells in Xi

and Y j concatenated in two single bitstrings Xi .code and

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 5 of 25 8

Algorithm 1 RI-join algorithm
Require: RI (r) as X , RI (s) as Y
1: ovl ← False;
 no overlapping interval pair found yet
2: i ← 0; j ← 0
3: while i < |X | and j < |Y | do
4: if Xi overlaps with Y j then
5: if AlignedAND(Xi .code, Y j .code) then
6: return true hit
 bitwise AND is non-zero
7: end if
8: ovl ← True;
 found an overlapping interval pair
9: end if
10: if Xi .end ≤ Y j .end then i ← i + 1 else j ← j + 1
11: end while
12: if ovl then
 at least one overlapping interval pair
13: return indecisive
14: else
15: return false hit
 no common cells in X and Y
16: end if

Y j .code allows us to perform this check (abstracted by Func-
tion AlignedAND) efficiently. We first select from each
bitstring the fragment that includes the codes of all cells
in [max{Xi .st,Y j .st},min{Xi .end,Y j .end}], i.e., the inter-
section interval of Xi and Y j . Then, we bitwise AND the
fragments. If the fragments have the same encoding (i.e.,
both have R or S encoding as shown in Table 2), ANDing
is preceded by XORing one of the two codes. If there is at
least one pair (Xi ,Y j) of overlapping intervals (variable ovl
of Algorithm 1 is True at the end of the while-loop), but the
object pair is not found to be a true hit, then the object pair is
indecisive, meaning that wewill have to apply the refinement
step for it. In contrast, if there are no overlapping intervals in
the twoRIs (ovl remains False), there are no common cells in
the raster representations of the objects, and we can conclude
that the two objects definitely do not intersect (false hit). As
an example, Fig. 4 shows two rasterized polygons and the
pairs (Xi ,Y j) of intervals from the two raster intervals that
overlap.

In general, the codes (bitstings) of two intersecting inter-
vals may occupy multiple bytes and the common subinterval
may be of arbitrary length. Before bit-shifting, Function
AlignedAND truncates all unmatched bytes from the two
bitstrings. Additionally, bit-shifting is done at the bytes of
one interval only (the one that starts earlier), ensuring that
the necessary bits are carried over from the subsequent byte
to prevent any loss of information. This continuous shifting
and matching (binary AND between aligned bitstrings) is
performed byte-by-byte, hence, once two ANDed bytes give
a non-zero, we immediately report the true hit. XORing, (if
both join inputs have the same encoding), is done on-demand
on the shifted byte, after any potential bit carryover. A byte-
wide XOR mask mbyte is used, created by concatenating our
mask m = 110 a few times to fill a byte; mbyte is shifted,
if necessary. The whole process can easily be parallelized,

Fig. 4 Two rasterized polygons, the overlaps between their raster inter-
vals, and their common cells

as shifting and bitwise operations are independent for each
byte.

For each pair of intervals, the last bytes to be matched
is a special case and has to be treated cautiously, since the
remaining bits that need checking may be less than 8 and
the rest of the bits in that byte should not be included in
the bitwise operations. In other words, the XOR and AND
operations applied on the last bytes should consider bits only
in the positions relevant to the compared intervals, otherwise
wemaymistake a false positive as a true hit. Hence, we apply
one last bit mask with 1 s at the positions of the bits that need
to partake in the operation, setting the rest to zero.

Figure5 shows how the codes for the first pair (X0, Y1)
of intersecting intervals from the example of Fig. 4 are
matched, where X0 = 〈[9, 13), 100101101101〉 and Y1 =
〈[11, 15), 100100101100〉 (i.e., assume that both datasets are
R-coded). Each code occupies 2 bytes. Since the interval of
Y1 starts 2 cells after the interval of X0, the code of X0 is
shifted by 2 × 3 = 6 bits in the first step. This aligns the
common cells (11 and 12) in the two codes. The common
fragment (6 bits) occupies 1 byte, so there will be one byte-
by-byte match. As both intervals are R-coded, we first XOR
the X0-byte with the (shifted) byte-wise XOR mask mbyte.
Before ANDing the two bytes, we AND the shifted byte with
a mask that clears the bits that are outside the common frag-
ment of the intervals, as we are at the last byte. Finally, the
bytes are ANDed with a 0 result, so the intersection of the
two objects remains indecisive with respect to (X0,Y1). As
a result, Algorithm 1 continues to find the next pair of over-
lapping intervals (X5,Y2) and performs the corresponding
code matching.
Analysis RI-join requires a single scan of interval lists
X and Y , since no two intervals in the same list (i.e., in
the same polygon) overlap. Assuming that bitstrings are
relatively short so that their matching (a call to Function
AlignedAND) takes constant time, the time complexity of
Algorithm 1 is O(|X |+|Y |) since the number of overlapping
interval pairs is at most |X | + |Y |.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 6 of 25 T. Georgiadis et al.

Fig. 5 Intervals [9, 13) and [11, 15) of our two example polygons over-
lap but are not aligned. Byte truncation and bit shifting (if necessary)
align their bitstrings before performing the bitwise operation(s)

3.4 “Within” spatial joins

Although we focus on polygon-polygon intersection joins,
RI can also be used as an intermediate filter for within joins.
The objective of a spatial within join is to find pairs (r , s) of
objects, r ∈ R, s ∈ S, such that r is within s, i.e. the space
occupied by r is a subset of the space occupied by s. For
each pair (r , s) of polygons that passes the filter step of the
within join (i.e., the MBR of r is within the MBR of s), we
can apply Algorithm 1 with the following changes in order
to identify whether (r , s) is a true negative (false hit), a true
positive (i.e., true hit), or an indecisive pair w.r.t. the within
predicate: As soon as we find an interval Xi ∈ RI (r) which
is not a subset of any interval Y j ∈ RI (r), we can terminate
with the assertion that r is not within s, since there is at least
one non-empty cell of r which is empty in s. In addition, for
an identified pair of (Xi ,Y j), such that Xi ⊆ Y j , if there is a
cell in Xi that is (i) full in Xi but not full in Y j or (ii) strong in
Xi and weak in YJ , then (r , s) should be a true negative and
the algorithm terminates. For (x, y) to be characterized as a
true hit without refinement, for all identified (Xi ,Y j) such
that Xi ⊆ Y j , all cells in the subinterval Xi where Xi and Y j

overlap should be full in Y j ; if at least one such cell is not
full, then we cannot guarantee a true hit and the pair (x, y)
must be passed to the refinement step unless it is found to be
a true negative.

4 APRIL

We now propose APRIL (Approximating Polygons as Raster
Interval Lists), a significant enhancement of RI, which can
be used as an intermediate filtering method for spatial query
processing and is more efficient and less space consuming
compared to RI.

Fig. 6 The interval generation for a polygon in a 8 × 8 space, without
bit-coding and using interval lists

4.1 A- and F-Interval Lists

APRIL is a succinct polygon approximation for intermediate
filtering, which categorizes raster cells into Full, Partial, and
Empty, based on their coverage percentage with the object’s
geometry (100%, less than 100%, and 0%, respectively). In
other words, APRIL unifies the Strong andWeak cell classes
used by RI and [58] to a single Partial class. Under this,
APRIL approximates a polygon with two sorted interval
lists: the A-list and the F-list. The A-list contains intervals
that concisely capture all cells that overlap with the polygon,
regardless of their type (Full or Partial), whereas the F-list
includes only Full cells. An interval list having n intervals is
stored as a simple sorted integer sequence in which the i-th
interval’s start, end are located at positions 2i and 2i + 1
respectively, for i ∈ [0, n).

The A-list and F-list for the example polygon of Fig. 3 are
shown in Fig. 6. Strong and Weak cell types become Partial,
which results in a simpler representation than RI. Note that
the set of intervals in each of the A- and F- lists are disjoint.
The new relationship identification table for a cell shared by
two polygons is shown in Table 3. Removing the Strong cell
type renders the approximation unable to detect true hits for
cells of the Strong-Strong case, as common cells that are
both Partial cannot decide definite intersection between the
two polygons. 1

Construction To construct an APRIL approximation, we
first need to identify the cells intersected by the polygon’s
area in the grid and label each one as either Partial or Full.
Then, Intervalization derives the F-list by sorting the set of
Full cells by ID (i.e., Hilbert order) and merging consecutive

1 As we have found experimentally (Sec. 7.4.2), this has minimal effect
on the amount of true hits and true negatives that the intermediate filter
manages to detect. This is due to the fact that the only cases of true hits
missed are pairs of polygons that intersect with each other exclusively
in cells typed Strong for both polygons and nowhere else.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 7 of 25 8

Table 3 APRIL: Do two objects
intersect in a common cell?

Partial Full

Partial Inconclusive Yes

Full Yes Yes

cell IDs into intervals. To derive the A-list, we repeat this for
the union of Full and Partial cells. In Sect. 6.2, we propose an
efficient algorithm that derives the F- and A-list of a polygon
without having to label each individual cell that intersects it.

4.2 APRIL intermediate spatial join filter

APRIL is used as an intermediate filter (Fig. 1) between the
MBR filter and the refinement phase. Given a pair (r , s) of
objects coming as a result of anMBR-join algorithm [10, 33,
49], APRIL uses the A- and F-lists of r and s to detect fast
whether the polygons (i) are disjoint (true negative), (ii) are
guaranteed to intersect (true hit), or (iii) are inconclusive, and
thus need to be forwarded to the refinement stage to verify
their intersection.

Whether r and s are disjoint (i.e., do not intersect) can be
determined by checkingwhether theirA-lists have any pair of
overlapping intervals. If they have no overlapping intervals,
then r and s do not have any common cell in the grid and thus
they cannot intersect. We check this condition by performing
amerge join over theA-lists and stopping as soon aswe detect
two overlapping intervals.

Pairs of polygons that have at least one pair of overlapping
intervals in their A-lists are then checked using their F-lists.
We perform two more merge-joins: A(r)
 F(s) and F(r)

A(s); detecting an overlapping intervals pair in one of these
two joins means that there is a Full cell in one object that
is common to a Full or Partial cell of the other object. This
guarantees that the two objects intersect and the pair (r , s)
is immediately reported as a spatial join result. If A(r)

F(s) fails to detect (r , s) as a true hit, then F(r)
 A(s) is
conducted; if the latter also fails, then (r , s) is an inconclusive
candidate join pair, which is forwarded to the refinement step.

In summary, APRIL’s intermediate filter sequence con-
sists of three steps: the AA-join, AF-join, and FA-join, as
illustrated in Fig. 7 and described by Algorithm 2. Each step
is a simplemerge-join between two sorted interval lists. Since
each list contains disjoint intervals, each of the three interval
joins takes O(n +m) time, where n and m are the lengths of
the two interval join input lists. Hence, the total cost of the
APRIL filter (i.e., Algorithm 2) is linear to the total number
of intervals in the A- and F-lists of r and s.
Join Order Optimization The AA-join, AF-join, and FA-
join could be applied in any order in Algorithm 2. For
example, if (r , s) is a true hit, it would be more beneficial to
perform the AF-join and the FA-join before the AA-join, as
this would identify the hit earlier. On the other hand, if (r , s)

Fig. 7 The three steps of the intermediate filter for a candidate pair of
polygons

Algorithm 2 APRIL join algorithm.
Require: (r , s) such that MBR(r) intersects MBR(s)
1: function IntervalJoin(X , Y)
2: i ← 0; j ← 0
3: while i < |X | and j < |Y | do
4: if Xi overlaps with Y j then
5: return true
 overlap exists
6: end if
7: if Xi .end ≤ Y j .end then i ← i + 1 else j ← j + 1
8: end while
9: return false
 no overlaps detected
10: end function
11:
12: if not IntervalJoin(A(r), A(s)) then
13: return false
 true negative
14: end if
15: if IntervalJoin(A(r), F(s)) then
16: return true
 true hit
17: end if
18: if IntervalJoin(F(r), A(s)) then
19: return true
 true hit
20: end if
21: return REFINEMENT(r , s)
 forward pair to refinement

is a true negative, conducting the AA-join first avoids the
futile AF- and FA-joins. However, it is impossible to deter-
mine a priori whether (r , s) is a true hit or a true negative.
In addition, we experimentally found that changing the join
order does not have a high impact on the intermediate filter
cost and the overall cost. For a typical candidate pair (r , s),
the common cells are expected to be few compared to the
total number of cells covered by either r or s, making AA-
join the most reasonable join to start with. Our experiments
confirm that the number of candidate pairs identified as true
negatives is typically much larger than the number of true
hits.

4.3 Generality

In this section, we demonstrate the generality of APRIL in
supporting other queries besides spatial intersection joins
between polygon-sets. We first show how we can use it as an
intermediate filter in selection (range) queries. Then, we dis-
cuss its application in spatialwithin joins. Finally, we discuss
thepotential of usingAPRILapproximations of polygons and
raster approximation of linestrings to filter pairs in polygon-
linestring intersection joins.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 8 of 25 T. Georgiadis et al.

4.3.1 Selection queries

Similarly to joins, APRIL can be used in an intermediate
filter to reduce the cost of selection queries. Consider a spa-
tial database system that manages polygons and where the
user can draw a selection query as arbitrary polygon QP;
the objective is to retrieve the data polygons that intersect
with the query polygon QP . Assuming that we have pre-
processed all data polygons and computed and stored their
APRIL representations, we can process polygonal selection
queries as follows. We first pre-process QP to create its
APRIL approximation. Then, we use the MBR of QP to
find fast the data polygons whose MBR intersects with the
MBR of the query (potentially with the help of an index [19,
50]). For each such data polygon r , we apply the APRIL
intermediate filter for the (r , QP) pair to find fast whether r
is a true negative or a true hit. If r cannot be pruned or con-
firmed as a query result, we eventually apply the refinement
step.

4.3.2 Spatial within joins

APRIL can also applied for spatial joins having awithin pred-
icate, where the objective is to find the pairs (r , s), where
r ∈ R and s ∈ S and r is within s (i.e., r is completely cov-
ered by s). In this case, the intermediate filter performs only
two of its three steps. The AA-join is applied first to detect
whether r and s are disjoint, in which case the pair should
be eliminated. Then, we perform a variant of the AF-join,
where the objective is to find if every interval in the A-list of
r is contained in one interval in the F-list of s; if this is true,
then (r , s) is guaranteed to be a within join result and it is
reported as a true hit. In the opposite case, (r , s) is forwarded
to the refinement step. We do not apply an FA-join, because
this may only detect whether s is within r .

4.3.3 Linestring to polygon joins

Another interesting question is whether APRIL can be useful
for intersection joins betweenother spatial data types, besides
polygons. The direct answer is no, since APRIL is designed
for spatially-extended objects. Still, our method can be use-
ful in the case of joins between polygons and linestrings. A
linestring is a sequence of line segments used to approximate
geographic objects such as roads and rivers. The rasteriza-
tion of a linestring results in only Partial cells, as linestrings
have zero area and cannot cover a cell entirely. In addi-
tion, as exemplified in Fig. 8, linestrings do not really benefit
from merging consecutive cells into intervals, as linestrings
that follow the Hilbert order (or any other fixed space-filling
curve) are rare. Hence, it is more space-efficient to approx-
imate a linestring as a sorted sequence of cell-IDs (which
are guaranteed to be Partial). Having the linestring approx-

Fig. 8 A linestring’s APRIL approximation size in bytes, if stored as
intervals versus cells

imations, we can evaluate spatial intersection joins between
a collection of polygons and a collection of linestrings by
applying two of the three steps in the APRIL intermediate
filter; namely, (i) a merge-join between the A-list of the poly-
gon and the cell-ID list of the linestring to determine whether
the pair is a true negative and (ii) a merge-join between the
F-list of the polygon and the cell-ID list of the linestring to
determine whether the pair is a true hit. Algorithm 2 can eas-
ily be adapted for polygon-linestring filtering by changing
IntervalJoin(X ,Y) to take a sequence of cell-IDs Y and treat
them as intervals of duration 1.

5 Customization

We have explored a series of optimization and customiza-
tion options that can potentially reduce APRIL’s space
complexity and improve its performance in terms of filter
effectiveness and speed.

5.1 Compression

Recall that the only information that APRIL stores for each
polygon is two interval lists: the A-list and the F-list. The
interval lists are essentially sorted integer arrays, so we can
exploit delta encoding and more specialized lossless com-
pression schemes to reduce their space requirements. Since
any of the AA- AF- and FA-join that we may apply on the
lists may terminate early (as soon as an interval overlap is
detected), we should go for a compression scheme that does
not require the decompression a list entirely before starting
processing it. In other words, we should be able to perform
joins while decompressing the lists. This way, we may avoid
uncompressing the lists in their entirety and still be able to
perform the joins. Given this, we use delta encoding, where
we store the first value of the list precisely and, from thereon
store the differences (gaps) between consecutive numbers.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 9 of 25 8

There are dozens of different compression schemes for
gaps between ordered integers, each with its pros and cons.
We chose the Variable Byte (VByte) method [12, 48], a
popular technique that, even though it rarely achieves opti-
mal compression, is adequately efficient and really fast [23].
We use the libvbyte [11] library that has an option for
sorted integer list compression, which matches our case
and boosts performance by utilizing delta encoding. Com-
pression hardly affects APRIL’s construction time, which is
dominated by the rasterization/intervalization cost.

At the same time, we adapt our interval join algorithm to
apply decompression and join at the same time, i.e., each time
it needs to get the next integer from the list, it decompresses
its value and adds it to the previous value in the list.

5.2 Partitioning

The accuracy of APRIL as a filter is intertwined with the
grid granularity we choose. A more fine-grained grid results
in more Full cells, increasing the chance of detecting true
hits; similarly, empty cells increase, enhancing true nega-
tive detection. However, simply raising the order N is not
enough to improve performance. Increasing N beyond 16
means that a single unsigned integer is not enough to store a
Hilbert curve’s identifier, which range from [0, 22N −1]. For
N = 17 or higher, we would need 8 bytes (i.e., an unsigned
long) to store each interval endpoint, exploding the space
requirements and the access/processing cost.

Given this, we introduce a partitioning mechanism for
APRIL that divides the data space into disjoint partitions
and defines a dedicated rasterization grid and Hilbert curve
of order N = 16 to each partition. This increases the global
granularity of the approximation without using long integers
while giving us the opportunity to define smaller partitions
for denser areas of the map for which a finer granularity is
more beneficial. Partitioning is done considering all datasets
(i.e., layers) of the map. That is, the same space partitioning
is used for all datasets that are joined together. The contents
of each partition are all objects that intersect it; hence, the
raster area of the partition is defined by the MBR of these
objects and may be larger than the partition, as shown in the
example of Fig. 9. APRIL approximations are defined based
on the raster area of the partition. The spatial join is then
decomposed into multiple joins, one for each spatial parti-
tion. Duplicate join results are avoided at the filter step of
the join (MBR-join), as shown in [13, 49]. This partitioning
approach is particularly beneficial for big data management
systems, such as Apache Sedona, where spatial queries are
evaluated in a distributed manner after space and data parti-
tioning. Partitioning allows (i)more accurate approximations
through fine-grained partitions and (ii) parallel evaluation per
partition that further reduces the end-to-end join time.

Fig. 9 Example of a partition P , a group of polygons in it and P’s
raster area with granularity order N = 8

5.3 Different granularity

If we use the same (fine) grid to rasterize all polygons, the
APRIL approximations of large polygons may contain too
many intervals, slowing down the intermediate filter. We can
create approximations using a different order N of theHilbert
curve for different datasets based on the average sizes of their
contents. There is a trade-off between memory and perfor-
mance since an order lower than 16 means fewer intervals
and thus lower memory requirements and complexity, but
also means reduced APRIL accuracy.

When joining two APRIL approximations of different
order, we need to adjust one of the two interval lists so that it
can be joined with the other. For this, we scale down the list
with the highest order. Specifically, before comparing two
intervals a = [astart , aend) and b = [bstart , bend) at orders
N and L respectively, where N > L , the highest order inter-
val a should be right shifted by n = |N − L|×2 bits, to form
a transformed interval a′, as follows:

a′ = [astart >> n, (aend − 1) >> n] (1)

Right shifting creates intervals in a more coarse-grained
grid, and thus, they may represent larger areas than the origi-
nal. Therefore, this formula works only for A-intervals since
there is no guarantee that a Full interval at order N will also
be Full at order L . For this reason, in Algorithm 2, we per-
form only one of the AF- and FA- joins, using the F-list of
the coarse approximation (which is not scaled down). This
hurts the filter’s effectiveness as a trade-off for the coarser
(and smaller) APRIL approximations that we may use for
large polygons.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 10 of 25 T. Georgiadis et al.

6 APRIL approximation construction

In this section,wepresent twomethods for the construction of
a polygon’s APRIL approximation. In Sect. 6.1 we present
a rasterization approach that efficiently finds the cells that
intersect an input polygon and their types, based on previous
research on polygon rasterization, and then sorts them to
construct the A- and F-interval lists. In Sect. 6.2, we propose
a more efficient approach tailored for APRIL, which avoids
classifying all cells but directly identifies the intervals and
constructs the A- and F-interval lists.

6.1 Efficient graphics-inspired rasterization

RI and the previous raster-based filter of [58] require the clas-
sification of each cell as Full, Strong, Weak, or Empty, based
on the percentage of the cell covered by the original polygo-
nal geometry. For this, they apply an algorithm that involves
numerous polygon clippings and polygonal area computa-
tions at a high cost. On the other hand, to define an APRIL
approximation, we only need to identify the cells that are par-
tially or fully covered by the input polygon’s area. Inspired by
rasterization techniques in the graphics community [4, 41],
we propose a polygon rasterization technique that involves
two stages. Firstly, we compute the Partial cells, which essen-
tially form the boundary of the polygon in the grid. Next, we
compute the Full cells using the previously computed bound-
ary cells.

Identifying the Partial cells is closely related to the pixel
drawingproblem in graphics,which involves detectingwhich
cells to “turn on” to draw a target line. While Bresenham’s
algorithm [8] is a popular and fast pixel drawing algorithm, it
approximates a line segment by turning on aminimal amount
of cells and may thus not detect all intersected cells. In con-
trast, the Digital Differential Analyzer (DDA) method [27]
is slower but identifies correctly and completely all inter-
sected cells. To detect the Partial cells, we use an efficient
variant of DDA [4] that uses grid traversal. We execute the
grid traversal for each edge of the polygon and store the IDs
of the identified Partial cells in a list. The leftmost grid in
Fig. 11 shows the Partial cells detected by the grid traversal
algorithm for the polygon drawn in the figure.

Next, to identify the Full cells, we have to detect all cells
that reside in the polygon’s enclosed areas. This is closely
related to the shape-filling problem in computer graphics, a
very old and thoroughly studied problem. Most approaches
are variants of two paradigms: sweep-line (scanline) render-
ing [7] or shape (flood) filling [34, 41]. Both approaches have
their pros and cons in terms of performance and accuracy.
Scanline Sweep-line algorithms use horizontal lines to find
all intersections between them and the polygon per row in
the grid and sort the intersections based on their x-values.
These are called event points and are used to loop through all

Fig. 10 The Scanline rendering algorithm we implemented, filling the
Full cells without performing any PiP tests

internal cells without performing any point-in-polygon (PiP)
tests. All cells in-between consecutive pairs of the sorted
event points are simply looped through and are labeled as
Full. Note that this approach can be used as a standalone
method without the grid traversal algorithm to detect all cells
that overlap with a polygon regardless of type. However, to
accurately classify each cell as Partial or Full and without
performing a PiP test for every single one, we use it only for
the Full cells right after the DDA algorithm has generated
the set of Partial cells.
Flood Fill The classic flood fill algorithm first selects an
unlabeled cell that is guaranteed to be within the polygon,
called seed. Then, it traverses all neighboring cells of the seed
until it finds the boundaries of the enclosed area, classifying
the encountered cells as fully covered. We implemented a
variant of this algorithm that minimizes the number of PiP
tests required to identify whether a cell is inside or outside
the polygon. Specifically, we iterate through the cells of the
polygon’s MBR area. If a cell c has not been labeled yet
(e.g., as Partial), we perform a PiP check from c’s center. If
the cell c is found to be inside the polygon, c is marked as
Full, and we perform a flood fill using c as the seed, stopping
at labeled cells and labeling all encountered unchecked cells
as Full. If the cell c is found to be outside the polygon, c is
marked as Empty, and we perform flood fill to mark Empty
cells. The algorithm repeats as long as there are unchecked
cells to flood fill from. This reduces the number of PiP tests
that need to be performed, as it suffices to perform a single
test for each contiguous region in the grid with Full or Empty
cells.

Fig. 10 shows an example of our sweep-line rendering
variantmethod.After all Partial cells have been identified, the
event points between the scanlines and the polygon’s edges
are calculated and sorted by their x-values. Then, for each
two consecutive pairs of event points, their in-between unla-
beled cells are labeled as Full. Fig. 11 illustrates our Flood
Fill process for an example polygon. The unchecked cells
form three contiguous regions bounded by Partial cells, two
of them being outside the polygon and one inside. Instead

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 11 of 25 8

Fig. 11 The flood fill algorithm, performing three iterations with dif-
ferent seeds c to completely fill all unchecked cells

of looking for cells within the polygon to flood fill starting
from them, it is faster to fill both the inside and outside of
the polygon (marking cells as Full and Empty, respectively),
as the number of point-in-polygon tests is minimized.

Regardless of which rasterization approach was chosen
and after all Partial and Full cells have been identified, the
algorithmmerges consecutive cell identifiers into intervals to
create theA- and F-lists that form the APRIL approximation.

6.2 One-step intervalization

The approach described in the previous section identifies the
types (Partial, Full, Empty) of all cells that intersect theMBR
of the input polygon. For polygons that are relatively large
and their MBRs define a large raster area this can be quite
expensive.We propose an alternative approach that identifies
the F-intervals of the APRIL approximation efficiently and
directly uses them to identify the A-intervals that include
them in one step, without the need to identify the types of all
individual cells in them.

As in Sec. 6.1, we first apply DDA [4] to detect the Partial
cells and sort them in Hilbert order. An important obser-
vation is that “gaps” between nonconsecutive identifiers in
the sorted Partial cells list indicate candidate Full intervals
on the Hilbert curve. Figure12 shows how these gaps are
formed for an example polygon. Identifying the first cell c
of each candidate interval as Full or Empty through a point-
in-polygon (PiP) test is enough to label the whole interval as
Full or Empty, respectively. The first “gap” interval is [7, 8)
containing just cell 7, which can be marked empty after a
PiP test. From all “gap” intervals, those marked in bold (i.e.,
32–34 = [32, 35) and 52–54 = [52, 55)) are Full intervals and
can be identified as such by a PiP test at their first cell (i.e.,
32 and 52, respectively).

Additionally,we can skip someof thesePiP tests by check-
ing all adjacent cells (north, south, west, east) of the first
cell c with smaller identifiers than c; if any of them is Full
or Empty, we can also give the same label to the candidate
interval, as it should exist in the same inner/outer area of the
raster image. For example, in Fig. 12, when the algorithm
moves to identify the interval [52, 55), it can detect that its

Fig. 12 Example of the intervals/gaps for a set of Partial cells. Whether
a gap will be labeled as Full or Empty depends on the outcome of the
PiP test

first cell 52 is adjacent to another Full cell with smaller order
(cell 33), that has been previously identified. Thus, the inter-
val [52, 55) exists in the same inner area as cell 33, and it
inherits its label (Full) without performing another PiP test
for it. In this example, a total of 5 PiP tests will be performed
for the intervals that start with the cells 7, 13, 30, 32 and 42,
instead of 11 PiP tests that would be performed otherwise if
we did not take into consideration the neighboring cells.

Algorithm 3 is a pseudocode for the one-step intervaliza-
tion process, which takes as input the sorted Partial cells list
P computed by DDA. The algorithm creates the A-list, F-list
of the polygon in a single loop through P . In a nutshell, the
algorithmkeeps track of the starting point of everyA-interval,
and when an empty gap is identified, the algorithm “closes”
the current A-interval and starts the next one from the next
Partial cell in the list. On the other hand, Full intervals start
with the identifier of the cell that is right after the last Partial
cell of a consecutive sequence and end before the next Partial
cell in order.

In detail, Algorithm 3, starting from the first cell p in P ,
keeps track of the starting cell-ID Astart of the current A-
interval, while the next cell p+1 in Hilbert order is also in P
(Lines 3–9) the currentA-interval is expanded. If the next cell
c = p + 1 is not partial, it is the starting cell of a candidate
F-interval. We first apply function CheckNeighbors(c) to
find whether there exists an adjacent cell of c which is part
of a FULL or EMPTY interval. Specifically, for cell c and
a neighbor n, we first check whether n < c (if not, n is either
Partial or unchecked); if yes, we binary-search P to check
whether n is a P-cell. If not, we apply a special binary search
method on the current F-list to find out whether n is part of
an interval in it. If we find n as part of an F-interval, then c is
definitely a Full cell. If we do not find n, then c is definitely
an Empty cell because n < c and n is not Partial. If for all
neighbors n of c, either n > c or n is Partial, then we cannot
determine the type of c based on the current data, so we

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 12 of 25 T. Georgiadis et al.

perform a PiP test to determine c’s type (i.e., Full or Empty).
If c is Full, then we know that the entire interval [c, p) is
FULL and append it to the F-list (Line 16). Otherwise (c is
Empty), c is the end of the current A-interval, so the interval
is added to the A-list, and the start of the next A-interval is
set to the next Partial cell p. The algorithm continues until
the list P of partial cells is exhausted and commits the last
A-interval (Line 23).

Algorithm 3 The One-Step Intervalization algorithm.
Require: Sorted Partial cell array P
1: function OneStepIntervalization(P)
2: i ← 0
 current position in array P
3: Astart ← Pi ; p ← Pi
 cell-IDs of current A-interval and

partial cell
4: while i < |P| and p + 1 = Pi+1 do
 while next cell is partial
5: i ← i + 1
6: p ← Pi
7: end while
8: c ← p + 1
 next uncertain cell
9: i ← i + 1; p ← Pi
 next partial cell
10: while i < |P| do
11: t ype ← CheckNeighbors(c)
12: if t ype �= FULL and t ype �= EMPTY then
 t ype is still

uncertain
13: t ype ← Point I nPolygon(c)
 PiP test gives FULL or

EMPTY
14: end if
15: if t ype = FULL then
16: AppendFull I nterval([c, p))
17: else
 t ype is EMPTY
18: Append All I nterval([Astart, c))
 current A-interval

finalized
19: Astart ← p
 start new A-interval
20: end if
21: Execute Lines 3–9
 go through partial cells until next gap
22: end while
23: Append All I nterval([Astart, Pi−1 + 1))
 save last ALL

interval
24: end function

Our one-step intervalization approach performs |P| − 1
PiP tests in theworst case,whichdominate its cost.Compared
to the FloodFill-based approach of Sect. 6.1, which explicitly
marks and then sorts all Full and Partial cells, Algorithm 3
is expected to be much faster for polygons that are large
compared to the cell size and include a huge number of Full
cells. On the other hand, flood filling may be a better fit for
small polygons with a small MBR and relatively few Full
cells.

7 Experimental analysis

We assess the performance of our proposed methods (i.e.,
RI and APRIL) by experimentally comparing themwith pre-
viously proposed polygon approximations for intermediate

filtering of spatial joins. These include the 5-corner approx-
imations comparison followed by a comparison of convex
hulls (5C+CH) (as proposed in [9]), and Raster Approxi-
mation (RA) of [58]. We also included a baseline approach
(None), which does not apply an intermediate filter between
the MBR-join and the refinement step. For RA, we set the
grid resolution to K = 750 cells, except for a few datasets
where we use K = 100, due to memory constraints. For our
methods (RI and APRIL), unless otherwise stated, we use a
granularity order N = 16 for the rasterization grid, meaning
that the Hilbert order of each cell can be represented by a
32-bit unsigned integer. The MBR filter of the spatial join
pipeline was implemented using the algorithm of [49]. The
refinement step was implemented using the Boost Geometry
library (www.boost.org) and its functions regarding shape
intersection. All code was written in C++ and compiled with
the -O3 flag on amachine with a 3.6GHz Intel i9-10850k and
32GB RAM, running Linux.

7.1 Datasets

We used datasets from SpatialHadoop’s [42] collection. T1,
T2, and T3 represent landmark, water, and county areas in
the United States (conterminous states only). We also used
twoOpen Street Maps (OSM) datasets (O5 and O6) that con-
tain lakes and parks, respectively, from all around the globe.
We grouped objects into continents and created six smaller
datasets representing each one: Africa (O5AF, O6AF), Asia
(O5AS, O6AS), Europe (O5EU, O6EU), North America
(O5NA, O6NA), Oceania (O5OC, O6OC) and South Amer-
ica (O5SA, O6SA). From all datasets, we removed non-
polygonal objects aswell asmulti-polygons, self-intersecting
polygons, and polygons with holes because they need special
handling by the refinement algorithms and the Boost Geom-
etry library that we are using does not support some of these
data types. The construction algorithms for APRIL approxi-
mations, presented in Sect. 6 can easily be adapted to handle
these special polygon classes with minor modifications; our
raster approximations for such polygons can be used directly
as intermediate filters. The first three rows of Table 4 show
statistics about the datasets. The cardinalities of the datasets
vary from 3.1K to 7.1M. The smallest dataset (T3) includes
complex polygons (thousands of edges), each having a rel-
atively large area (see the third row of Table 4). The other
datasets are larger and include medium (e.g., T1, OSM data)
to small and relatively simple polygons (e.g., T2). We con-
ducted spatial joins only between pairs of datasets that cover
the same area (i.e., T1
T2, T1
T3, O5AF
O6AF, etc.).

7.2 Optimizations and customizations

In this set of experiments, we showcase how the added fea-
tures of APRIL perform both independently and compared

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 13 of 25 8

Ta
bl
e
4

St
at
is
tic

s
of

th
e
da
ta
se
ts
an
d
sp
ac
e
re
qu

ir
em

en
ts
of

th
e
da
ta
an
d
th
e
ap
pr
ox

im
at
io
ns

T
1

T
2

T
3

O
5A

F
O
6A

F
O
5A

S
O
6A

S
O
5E

U
O
6E

U
O
5N

A
O
6N

A
O
5S

A
O
6S

A
O
5O

C
O
6O

C

#
of

Po
ly
go
ns

12
3K

2.
25
M

3.
1K

72
K

19
1K

44
7K

62
2K

1.
9M

7.
1M

4.
0M

99
9K

12
3K

22
8K

10
7K

22
3K

A
vg

#
of

ve
rt
ic
es

25
.4

31
.9

22
85
.0

58
.9

36
.3

45
.3

41
.9

35
.1

32
.1

37
.6

47
.5

47
.5

41
.6

48
.4

42
.7

A
vg

ob
jM

B
R
ar
ea

1.
77
E
-0
4

4.
03
E
-0
5

3.
95
E
-0
1

2.
03
E
-0
3

1.
23
E
-0
3

1.
03
E
-0
3

9.
98
E
-0
4

1.
25
E
-0
4

1.
19
E
-0
4

1.
11
E
-0
4

4.
40
E
-0
4

1.
34
E
-0
3

2.
37
E
-0
3

5.
00
E
-0
4

5.
27
E
-0
4

G
eo
m
et
ri
es

si
ze

(M
B
)

51
.1

11
68
.1

11
5.
3

68
.9

11
2.
7

32
7.
9

42
2.
1

11
20
.7

37
46
.2

24
53
.4

76
7.
4

94
.9

15
3.
7

84
.2

15
1.
3

M
B
R
si
ze

(M
B
)

4.
4

81
.1

0.
1

2.
6

6.
9

16
.1

22
.4

70
.9

25
8.
4

14
4.
8

36
.0

4.
5

8.
2

3.
9

8.
1

A
PR

IL
si
ze

(M
B
)

14
.4

13
4.
0

57
.2

14
.2

25
.4

55
.2

64
.5

18
0.
3

96
8.
0

25
1.
0

15
5.
0

25
.4

44
.4

7.
3

15
.0

A
PR

IL
-C

si
ze

(M
B
)

6.
6

75
.3

16
.0

5.
1

10
.6

23
.3

28
.6

84
.8

40
6.
5

13
8.
0

62
.4

9.
2

16
.7

3.
8

7.
8

R
I
si
ze

(M
B
)

19
.5

13
8.
2

96
8.
7

18
.6

55
.7

57
.5

10
9.
8

18
0.
9

94
2.
9

23
8.
1

21
3.
5

31
.2

14
3.
4

14
.2

39
.3

R
A
si
ze

(M
B
)

11
00
.0

20
00
0.
0

26
.9

61
7.
2

17
00
.0

37
00
.0

57
00
.0

34
2.
2

11
40
0.
0

62
00
.0

15
00
.0

11
00
.0

21
00
.0

89
8.
7

20
00
.0

5C
-C
H
si
ze

(M
B
)

28
.7

70
5.
4

1.
6

18
.5

46
.6

11
7.
8

15
9.
4

51
5.
4

17
00
.0

12
00
.0

25
7.
7

30
.4

52
.9

28
.8

57
.7

to RI. Additionally, we compare APRIL with RI in terms of
space complexity, filter effectiveness, filter cost, and creation
time.

7.2.1 The effect of N in RI

Recall that our RI approach superimposes a 2N × 2N grid
over the data space and approximates each object o with the
setCo of cells that overlap with o.Co is thenmodeled by a set
of intervals and a bitstring for each interval, which encodes
the types of the cells that it contains.As discussed in Sect. 3.2,
we set the value of N to 16, to have a fine granularity and
be able to store the interval endpoints in 4-byte unsigned
integers. We confirm the appropriateness of this choice by
evaluating the effectiveness of both RI and APRIL in spatial
joins for various values of N .

Table 5 analyzes the performances of RI and APRIL for
different values of N in spatial join T1
 T2. The first three
columns of the table show the percentage of candidate pairs
identified by the intermediate filters as true hits, false hits, or
inconclusive (i.e., should be sent to the refinement step). The
last four columns show the cost of the filter step of the spatial
join (MBR-join), the total cost of applying our intermediate
filters that use RI and APRIL to all candidate pairs, the total
cost of the refinement step, and the overall join cost. The
MBR-join cost is N -invariant, as this operation is indepen-
dent of the subsequent steps (intermediate filter, refinement).
Observe that the number of inconclusive pairs shrinks as N
increases; the refinement cost decreases proportionally. On
the other hand, the cost of the RI filter increases with N as
the number and length of intervals increase. Eventually, for
the largest value of N , the overall join cost converges to less
than 1s.

In Table 6, we show the total time required to compute
the RI and APRIL object approximations of all objects in T1
and T2 and the corresponding storage requirements for them
as a function of N . For small values of N , where the inter-
mediate filters are not very effective, the computation cost
and the space requirements are low because, for each object,
only a small number of intervals, each approximating a small
number of cells are constructed. On the other hand, for large
values of N , where the intermediate filters are most effective,
the approximations are very fine and require more time for
computation and more space. We performed the same analy-
sis for all other pairs of joined datasets (results are not shown
due to space constraints) and drew the same conclusions.
Overall, due to the high effectiveness for N = 16, which
brings the best possible performance to the overall spatial
join, we choose this value of N in the rest of the experiments.
Althoughwe use a fixed grid for all objects (independently of
their sizes), the intervalization and compression of the raster
representations do not incur an unbearable space overhead
and, at the same time, we achieve a very good filtering per-

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 14 of 25 T. Georgiadis et al.

Table 5 Effect of N on the performance of RI and APRIL in T1
T2
True hits False hits Indecisive MBR-join (s) RI-filter (s) Refinement (s) Total time(s)

T1 �� T2 (RI)

N = 10 5.68% 24.96% 69.36% 0.03 0.03 1.44 1.50

N = 13 13.34% 46.88% 39.79% 0.03 0.06 0.63 0.72

N = 14 17.74% 52.20% 30.06% 0.03 0.09 0.48 0.60

N = 15 21.65% 56.07% 22.28% 0.03 0.15 0.37 0.54

N = 16 24.50% 59.42% 16.08% 0.03 0.28 0.27 0.59

T1 �� T2 (APRIL)

N = 10 5.67% 24.96% 69.37% 0.03 0.03 1.45 1.52

N = 13 13.46% 46.88% 39.66% 0.03 0.04 0.61 0.68

N = 14 17.99% 52.20% 29.81% 0.03 0.04 0.45 0.52

N = 15 21.85% 56.07% 22.08% 0.03 0.04 0.34 0.41

N = 16 24.29% 59.42% 16.29% 0.03 0.05 0.26 0.34

Table 6 Effect of N on the cost
and space of RI and APRIL for
T1 and T2

T1 RI constr. cost (s) APRIL constr. cost (s) RI Size (MB) APRIL Size (MB)

N = 10 0.98 0.29 2.6 3.0

N = 13 5.32 0.55 3.5 3.6

N = 14 13.90 0.85 4.7 4.4

N = 15 43.17 1.37 8.2 7.7

N = 16 148.72 2.37 19.0 13.8

T2 RI constr. cost (s) APRIL constr. cost (s) RI Size (MB) APRIL Size (MB)

N = 10 15.29 5.68 46.0 53.0

N = 13 43.95 8.08 53.0 58.4

N = 14 87.35 11.23 62.0 66.7

N = 15 214.04 16.57 82.0 84.1

N = 16 620.57 26.76 132.0 128.0

formance even for small objects while avoiding re-scaling at
runtime (as opposed to [58]).

7.2.2 Join order

So far, the interval joins in APRIL are assumed to be applied
in a fixed order: AA, AF, and FA. As discussed in Sect. 4.2,
the joins can be performed in any order. Table 7 tests differ-
ent join orders for T1
 T2 and T1
 T3. T1
 T2 (like the
majority of tested joins) has a high percentage of true nega-
tives, so the original order is the most efficient one (changing
the order of AF and FA does not make a difference). On the
other hand, for T1
 T3, where the true hits are more, push-
ing the AA-join at the end is more beneficial. Since knowing
the number (or probability) of true negatives and true hits a
priori is impossible, and because the join order does notmake
a big difference in the efficiency of the filter (especially in
the end-to-end join time), we suggest using the fixed order,
which is the best one in most tested cases. In the future, we

will investigate the use of data statistics and/or object MBRs
to fast guess a good join order on an object pair basis.

7.2.3 Partitioning

Tables 8 and 9 illustrate the effect of data partitioning
(Sect. 5.2) on the effectiveness, query evaluation time, and
space requirements of APRIL approximations. A higher
number of partitions means finer-grained grids per parti-
tion and thus, more intervals per polygon (i.e., more space is
required). Even though this reduces the number of inconclu-
sive cases, it can slow down the intermediate filter sincemore
intervals need to be traversed per candidate pair. For exam-
ple, T1
 T3 has already a small percentage of inconclusive
pairs, so partitioning may not bring a significant reduction in
the total join time. On the other hand, for joins with a high
inconclusive percentage, such as O5AS
 O6AS, partition-
ing can greatly reduce the total cost. In summary, partitioning
comes with a time/space tradeoff.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 15 of 25 8

Table 7 Join order effect on
APRIL filter cost

Join Order True hits True negatives Indecisive Int. Filter (s)
T1 �� T2

AA-AF-FA 24.29% 59.42% 16.29% 0.0505

AA-FA-AF 24.29% 59.42% 16.29% 0.0501

AF-FA-AA 24.29% 59.42% 16.29% 0.0585

FA-AF-AA 24.29% 59.42% 16.29% 0.0601

T1 �� T3

AA-AF-FA 69.84% 28.13% 2.03% 0.1872

AA-FA-AF 69.84% 28.13% 2.03% 0.1891

AF-FA-AA 69.84% 28.13% 2.03% 0.1737

FA-AF-AA 69.84% 28.13% 2.03% 0.1773

7.2.4 Different granularity

As discussed in Sect. 5.3, we can define and use APRIL at
lower granularity than N = 16 for one or both datasets,
trading filter effectiveness for space savings. In Table 10,
we study the effect of reducing N for T3 in T1
 T3. The
size of T3’s APRIL approximations halves every time we
decrease N by one. The filter time also decreases due to
the reduced amount of intervals from T3 in the interval joins.
However, the percentage of indecisive pairs increases, raising
the refinement cost. N = 15 is the best value for T3 because
it achieves the same performance as N = 16 while cutting
the space requirements in half.

7.3 APRIL construction cost

We now evaluate the APRIL construction techniques that
we have proposed in Sect. 6, comparing them with the ras-
terization method used in previous work [58] (and for RI).
Note that RA [58] and RI essentially apply polygon clipping
and polygon-cell intersection area computations, because
they need to classify the cells that intersect the polygon to
Weak, Strong, and Full. On the other hand, APRIL uses
two classes: Partial and Full, which enables the applica-
tion of the techniques that we proposed in Sect. 6. Table
11 shows the time taken to compute the APRIL approxi-
mations of all polygons in each dataset (for N = 16), using
(i) the rasterization+intervalization approach of RI, after uni-
fying Strong and Weak cells, (ii) the Scanline and FloodFill
approaches tailored forAPRILpresented inSect. 6.1, and (iii)
two versions of our novel OneStep intervalization approach
(Sect. 6.2): one that performs a point-in-polygon (PiP) test
for each first cell c of a candidate Full interval and one that
checks the Neighbors of c before attempting the PiP test.
All costs in Table 11 include the intervalization cost as well
to generate the final interval lists needed for APRIL. The
intervalization for the rasterization techniques is performed
by merging cells with consecutive Hilbert order identifiers

into intervals, while our methods from Sect. 6.2 generate the
intervals straight away.

We also included in the comparison the rasterization tech-
nique proposed for IDEAL [46], which also detects Full and
Partial cells, as implemented in [45]. We modified IDEAL’s
granularity definition formula accordingly tomatchAPRIL’s
Hilbert space grid of order N = 16.

Observe that ourOneStep intervalization algorithmemploy-
ing the Neighbors check (Section 6.2) and our Scanline
rendering (Section 6.1) are the fastest approaches in most
cases. Scanline and Flood Fill show little to no difference
in performance between them, with Scanline being over-
all faster for small polygons and Flood Fill being faster
for large and more complex shapes. This is because Flood
Fill performs some PiP tests while Scanline does not, as
well as Flood Fill filling some unnecessary (Empty) pix-
els outside of the polygon, while Scanline focuses entirely
on the interior of the shape specified by the event points.
OneStep (Neighbors) applies 40% − 70% fewer PiP tests
compared to OneStep (PiPs) that does not apply the Neigh-
bors check. Only in datasets containing relatively small
polygons OneStep (Neighbors) is up to 32% slower than
the Scanline method, however, in most such cases, their dif-
ference is negligible. On the other hand, in some datasets
containing large polygons (e.g., T3, O6AF, O6SA) OneStep
is up to one order of magnitude faster than Scanline (T3)
and 33% to 224% faster than the rest of the methods. All
methods proposed in Sect. 6 are orders of magnitude faster
compared to rasterization for RI because the latter has to
perform expensive detection for Strong and Weak cells.

7.4 Comparative study

Finally, we compare RI and APRIL with other intermediate
filters in terms of space complexity, filter effectiveness, and
filter cost. For all experiments, we created RI and APRIL
using a single partition (i.e., the map of the two datasets that
are joined in each case), rasterized on a 216×216 grid, which

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 16 of 25 T. Georgiadis et al.

Table 8 # partitions per
dimension effect on join time

Indecisive Int. Filter (s) Refinement (s) Total time (s)

T1 �� T2

1 16.29% 0.08 0.27 0.39

2 12.81% 0.06 0.22 0.32

3 11.36% 0.08 0.20 0.30

4 10.50% 0.09 0.20 0.32

T1
T3
1 2.03% 0.47 0.34 0.86

2 1.77% 0.29 0.29 0.62

3 1.67% 0.37 0.27 0.69

4 1.64% 0.49 0.26 0.80

O5AF
O6AF

1 26.92% 0.06 0.36 0.45

2 21.24% 0.06 0.29 0.37

3 18.26% 0.07 0.25 0.34

4 16.63% 0.08 0.24 0.35

O5AS
O6AS

1 30.76% 0.43 7.48 8.04

2 24.07% 0.41 5.30 5.83

3 20.52% 0.46 4.34 4.93

4 18.39% 0.55 3.61 4.29

O5EU
O6EU

1 34.32% 5.83 30.55 38.01

2 27.97% 5.35 24.24 31.22

3 24.84% 6.06 21.55 29.24

4 22.60% 6.61 19.99 28.23

O5NA
 O6NA

1 22.26% 3.56 24.08 28.49

2 17.58% 3.14 18.81 22.81

3 15.68% 3.65 17.13 21.64

4 14.45% 4.52 16.02 21.40

O5SA
O6SA

1 25.80% 0.17 1.44 1.66

2 20.74% 0.14 1.21 1.39

3 18.39% 0.17 1.12 1.33

4 17.03% 0.20 1.07 1.30

O5OC
O6OC

1 24.42% 0.10 1.51 1.65

2 18.89% 0.12 1.09 1.25

3 16.17% 0.14 0.95 1.13

4 14.65% 0.16 0.88 1.08

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 17 of 25 8

Table 9 # of partitions per dimension, effect on APRIL size (MB)

T1 T2 T3 O5AF O6AF O5AS O6AS O5EU O6EU O5NA O6NA O5SA O6SA O5OC O6OC

1 14.4 134.0 57.2 14.2 25.4 55.2 64.5 180.3 968.0 251.0 155.0 25.4 44.4 7.3 15.0

2 26.1 236.3 112.0 29.2 49.2 106.9 124.2 336.9 1900.0 453.4 311.8 51.5 86 14.3 49.2

3 37.1 352.6 166.7 44.7 74.2 164.0 188.3 492.5 2800.0 654.2 459.6 76.9 129.8 35.2 76.3

4 47.2 465.9 224.9 61.4 99.5 219.1 255.1 653.0 3700.0 875.1 619.0 104.2 172.3 49.1 107.7

Table 10 Join between T1 (order 16) and T3 (order N)

N True hits True negs. Indecisive Int. Filter (s) Refinement (s) Total (s) T3 size (MB)

16 69.84% 28.13% 2.03% 0.19 0.33 0.57 57.2

15 69.63% 27.85% 2.52% 0.13 0.41 0.59 28.3

14 69.18% 27.46% 3.36% 0.11 0.54 0.70 14.0

13 68.39% 26.86% 4.75% 0.09 0.78 0.92 6.9

12 66.63% 25.70% 7.67% 0.09 1.23 1.37 3.4

Table 11 Total construction
cost (sec) for all datasets

Dataset RI Flood Fill Scanline IDEAL OneStep (PiPs) OneStep (Neighbors)

T1 143.62 3.90 3.63 9.76 3.74 2.19

T2 601.67 28.05 23.06 37.40 33.76 23.43

T3 9919.06 265.72 278.50 666.19 75.40 28.33

O5AF 264.45 4.25 3.98 13.02 11.00 4.72

O6AF 468.47 13.06 12.62 32.45 5.66 4.17

O5AS 486.86 11.69 10.07 27.42 21.28 11.78

O6AS 994.93 28.98 24.76 56.14 65.01 25.07

O5EU 1193.71 36.08 30.30 58.18 55.79 33.71

O6EU 5493.15 172.20 147.29 244.95 243.17 156.94

O5NA 1530.92 53.33 45.26 72.34 133.39 66.60

O6NA 1630.29 43.40 40.89 76.62 51.79 30.71

O5SA 361.87 6.67 5.79 20.69 14.74 6.77

O6SA 1478.05 34.56 34.15 98.20 22.86 10.52

O5OC 39.99 2.88 2.48 6.17 3.82 2.49

O6OC 113.99 9.32 8.49 18.29 20.75 8.56

is the best-performing granularity for both methods.We used
a fixed order (AA-, AF-, FA-) for the interval joins of APRIL,
as shown in Algorithm 2.

7.4.1 Space complexity

Table 4 shows the total space requirements of the object
approximations required by each intermediate filter for each
of the datasets used in our experiments. APRIL and APRIL-
C refer to the uncompressed and compressed version of
APRIL, respectively. As a basis of comparison, we also show
the total space required to store the exact geometries of
the objects and their MBRs. Note that, in most cases, our
methods (RI, APRIL and APRIL-C) are significantly more
space efficient compared to RA and have similar or lower
space requirements to the 5C-CH. The only exception is T3,

which includes huge polygons that are relatively expensive to
approximate even by APRIL-C. Notably, for most datasets,
the compressed APRIL approximations have similar space
requirements as the object MBRs, meaning that we can keep
them in memory and use them in main-memory spatial joins
[28] directly after the MBR-join step without incurring any
I/O.

7.4.2 Comparison in spatial intersection joins

We evaluate APRIL (both compressed and uncompressed
versions), 5C+CH, RA, and RI, on all join pairs, in Fig. 13.
We compare their ability to detect true hits and true negatives,
their computational costs as filters, and their impact on the
end-to-end cost of the spatial join.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 18 of 25 T. Georgiadis et al.

Fig. 13 Filter effectiveness and spatial join cost for various intermediate filters

Filter Effectiveness APRIL and RI have the highest filter
effectiveness among all approximations across the board.
APRIL’s true hit ratio is slightly smaller compared to that of
RI because APRIL fails to detect the (rare) pairs of polygons
which only have Strong-Strong common cells. However, this
only brings a marginal increase in the refinement step’s cost,
with the benefit of having a faster and more space-efficient
filter. In O5AS
O6AS andO5OC
O6OC,APRIL and RI
have marginally lower true hit ratio compared to RA; how-
ever, in these cases, their true negative ratio is much higher
than that of RA. The least effective filter is 5C+CH, mainly
due to its inability to detect true hits.
Intermediate Filter cost 5C+CH are simple approximations
(a few points each) thus, the corresponding filter is very
fast to apply. Notably, APRIL has a filtering cost very close
to that of 5C+CH and sometimes even lower. This is due
to APRIL’s ability to model a raster approximation as two

sequences of integers, which are processed by a sequence
of efficient merge-join algorithms. 5C+CH has poor filtering
performance, which negatively affects the total join cost (last
column), whereas APRIL is very fast and very effective at
the same time. The state-of-the-art filter RI ismore expensive
than APRIL, because it requires the alignment and bitwise
ANDing of the interval bit-codes. As a result, APRIL is
3.5−8.5 times faster as an intermediate filter compared to RI
(note the “Intermediate Filter” part of the cost in the bars). A
comparison between the filter costs of APRIL and APRIL-C
reveals that decompressing the interval listswhile performing
the joins in APRIL-C only brings a small overhead, making
compression well worthy, considering the space savings it
offers (see Table 4). The decompression cost is significant
only in T1
 T3, because T3’s A-lists and F-lists are quite
long. Still, even in this case, APRIL-C is much faster than
RI.Refinement cost The refinement cost is intertwined with

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 19 of 25 8

Table 12 Improvement of APRIL over RI on all join pairs

APRIL vs. RI range average

APRIL size (times smaller) 0.95x–16.94x 2.59x

APRIL-C size (times smaller) 1.73x–60.54x 7.39x

Construction (times faster) 13.32x–350.13x 70.71x

Intermediate Filter (times faster) 3.45x–8.56x 4.86x

End-to-end Join (times faster) 1.10x–3.51x 1.58x

the percentage of indecisive pairs. The detection of fewer
candidate pairs as true hits or true negatives leads to a higher
refinement workload; this is why APRIL and RI result in the
lowest refinement cost compared to the rest of the approxi-
mations.
Overall join cost APRIL (Sect. 4) reduces the overall cost
of end-to-end spatial joins up to 3.5 times compared to using
our RI intermediate filter (Sect. 3), while also achieving a
speedup of 3.23x-25x against the rest of the approximations.
Adding the APRIL intermediate filter between the MBR fil-
ter and the refinement step reduces the spatial join cost by
7x-28x. APRIL’s high filtering effectiveness, low applica-
tion cost, and low memory requirements render it a superior
approximation for filtering pairs in spatial intersection join
pipelines.
APRIL vs. RI In summary, APRIL prevails over RI on all
aspects including space complexity, construction time, filter-
ing efficiency, and overall spatial intersection join time. Table
12, summarizes the improvement that APRIL achieves over
RI on all join pairs.

7.4.3 Effect of variance in object sizes

We now test the effect that the variance between the sizes of
joined objects has on the performance of APRIL compared to
previous work. For this, besides T1, T2, and T3, we used two
more Tiger datasets, i.e., T9 (States) and T10 (Zip codes).
Table 14 lists statistics of all the Tiger datasets that we used
in this experiment ordered by average area of the objects in
them.

To demonstrate APRIL’s performance on dataset pairs of
varying object sizes, we joined theWater Areas dataset (T2),
which has polygons with the smallest areas on average com-
pared to other Tiger datasets, in increasing order of average
area per object. Note that as the objects which are joined
with T2-objects grow larger (T1, T10, T3 and then T9) the
indecisive cases reduce drastically. This can be explained by
the fact that as a polygon grows larger, it generates more
Full intervals, and thus, the probability of detecting a true
hit between it and another polygon using APRIL increases.
Table 13 shows a detailed performance comparison for the
spatial intersection join between the TIGER datasets. In all

Table 14 TIGER dataset statistics, sorted by ascending average object
MBR area

Dataset # objects avg # vertices avg MBR area

T2 (Water areas) 2252316 31.9 4.03E-05

T1 (Landmarks) 123045 25.4 1.77E-04

T10 (Zip codes) 26091 1404.8 4.14E-02

T3 (Counties) 3043 2316.2 3.95E-01

T9 (States) 43 18140.4 2.59E+01

cases, APRIL retains the best filtering effectiveness and total
execution time. The performance gap between APRIL and
the other methods grows with the difference in sizes between
the objects in the candidate pairs, due to APRIL’s effective-
ness in detecting true hits, avoiding their costly refinement.

7.4.4 Performance in other queries

We now evaluate the performance of APRIL in other queries,
besides spatial intersection joins. We start with selection
queries of arbitrary shape (see Sect. 4.3.1). For this exper-
iment, we sampled 1000 polygons from T3 and applied them
as selection queries on T1 and T2, simulating queries of the
form: find all landmark areas (T1) or water areas (T2) that
intersect with a given US county (T3). As Table 15 shows,
compared to RI, APRIL achieves a 3.5x-4x speedup in the
total query cost.

Next, we compare all methods in spatial within joins,
where the objective is to find pairs (r , s) such that r is within
s (see Sect. 4.3.2). As Table 16 shows, APRIL again achieves
the best performance due to its extremely low filtering cost.
APRIL is even faster than 5C+CH, because 5C+CHperforms
two polygon-in-polygon tests, which are slower compared to
a polygon intersection test.

Finally, we test the effectiveness of APRIL in polygon-
linestring joins, as described in Sect. 4.3.3. For this experi-
ment, we join the polygon sets T1, T2, and T3with dataset T8
(from the same collection), which contains 16.9M linestrings
(roads in the United States), each having 20.4 vertices on
average. In this comparison, we do not include RI and RA
because Strong cell types cannot be used to detect true hits.
Table 17 compares APRIL with 5C+CH and the skipping
of an intermediate filter (None). 5C+CH only detects true
negatives (in the case where the 5C+CH approximations do
not intersect). APRIL outperforms 5C+CH by at least three
times in total join time and by orders of magnitude in T3

T8, where it can identify the great majority of join results as
true hits.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 20 of 25 T. Georgiadis et al.

8 Related work

Most previous works on spatial intersection joins [21] focus
on the filter step of the join (denoted by MBR-join). They
either exploit the pre-existing indexes [10, 26] or partition the
data on-the-fly and perform the join independently at each
partition [29, 33, 49]. Each partition-to-partition MBR-join
can be performed in memory with the help of plane-sweep
[5, 10].
Intermediate filters To further reduce the candidate pairs
that reach the refinement step, conservative and/or progres-
sive object approximations can be used for identifying false
hits and/or true hits, respectively. Brinkhoff et al. [9] sug-
gested the use of the convex hull and the minimum bounding

5-corner convex polygon (5C) as conservative approxima-
tions and the maximum enclosing rectangle (MER) as a
progressive approximation. MER is hard to compute and of
questionable effectiveness [58], hence, we did not include it
in our comparison. In follow-upwork [58], the object geome-
tries are rasterized and modeled as grids, where each cell is
colored based on its percentage of its coverage by the object.
By re-scaling and aligning the grids of two candidate join
objects, we can infer, in most cases, whether the objects are
a join pair or a false hit. Indecisive pairs are forwarded to the
refinement step.
Raster-based approaches for other queries Hierarchical
(quad-tree based) raster approximations based on a hier-
archical grid have been used in the past [17] for window

Table 13 End-to-end join performance between T2 and datasets with varying average object area

Method Accepted Rejected Inconclusive Int. Filter (s) Refinement (s) Total time (s)

T2 �� T1

None 0.00% 0.00% 100.00% 0.00 2.94 2.98

RA (K=750) 21.98% 50.76% 27.26% 1.16 1.20 2.40

5C+CH 0.00% 43.15% 56.85% 0.05 1.65 1.74

APRIL 24.29% 59.42% 16.29% 0.05 0.27 0.35

T2
T10
None 0.00% 0.00% 100.00% 0.00 296.01 297.51

RA (K=750, K=150) 27.49% 25.15% 47.36% 27.61 228.51 257.55

5C+CH 0.00% 29.11% 70.89% 2.28 204.66 208.68

APRIL 51.92% 45.59% 2.50% 2.32 6.46 9.51

T2
T3
None 0.00% 0.00% 100.00% 0.00 310.81 312.38

RA (K=750, K=150) 58.27% 23.15% 18.58% 31.82 102.67 135.79

5C+CH 0.00% 22.03% 77.97% 2.32 224.14 228.40

APRIL 68.47% 29.88% 1.64% 3.22 5.29 9.32

T2
T9
None 0.00% 0.00% 100.00% 0.00 2595.44 2596.96

RA (K=750, K=150) 49.34% 20.26% 30.40% 24.55 1352.44 1378.21

5C+CH 0.00% 21.70% 78.30% 2.36 2003.41 2007.63

APRIL 68.04% 31.80% 0.16% 20.52 3.03 24.46

Table 15 APRIL vs. RI (polygonal range queries)

True hits True negatives Indecisive Int. Filter (s) Refinement (s) Total (s)

1000 T3 queries against T1

RI 69.28% 28.60% 2.12% 0.52 0.10 0.64

APRIL 69.27% 28.60% 2.13% 0.06 0.10 0.18

1000 T3 queries against T2

RI 68.46% 29.87% 1.67% 9.26 1.58 11.07

APRIL 68.46% 29.87% 1.67% 1.02 1.58 2.84

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 21 of 25 8

Table 16 Performance of filters
(spatial within joins)

True hits True negatives Indecisive Int. Filter (s) Refinement (s) Total (s)

T2 �� T1 (Tiger water in landmark areas)

None 0.00% 0.00% 100.00% 0.00 3.61 3.64

5C+CH 0.00% 34.71% 65.29% 0.10 1.33 1.46

RA 13.48% 29.18% 57.34% 0.14 1.11 1.28

RI 18.48% 59.46% 22.06% 0.20 0.48 0.71

APRIL 18.48% 59.42% 22.11% 0.05 0.49 0.58

T1 �� T3 (Tiger landmark in county areas)

None 0.00% 0.00% 100.00% 0.00 20.14 20.19

5C+CH 0.00% 20.72% 79.28% 0.37 14.02 14.44

RA 44.35% 14.29% 41.36% 0.51 8.26 8.82

RI 68.05% 28.13% 3.82% 1.56 0.80 2.41

APRIL 68.05% 28.13% 3.82% 0.21 0.80 1.06

T2 �� T3 (Tiger water in county areas)

None 0.00% 0.00% 100.00% 0.00 383.49 384.23

5C+CH 0.00% 22.17% 77.83% 7.70 274.54 282.98

RA 42.50% 15.25% 42.25% 9.53 165.50 175.77

RI 67.36% 29.88% 2.75% 27.08 12.22 40.04

APRIL 67.36% 29.88% 2.75% 3.47 12.22 16.43

Table 17 Polygon-linestring
spatial intersection joins

True hits True negatives Indecisive Int. Filter (s) Refinement (s) Total (s)

T1 �� T8 (Tiger landmarks and roads)

None 0.00% 0.00% 100.00% 0.00 27.82 28.25

5C+CH 0.00% 45.24% 54.76% 1.07 15.99 17.49

APRIL 12.70% 55.01% 32.29% 0. 93 3. 82 5. 18

T2 �� T8 (Tiger water areas and roads)

None 0.00% 0.00% 100.00% 0.00 238.91 241.59

5C+CH 0.00% 68.13% 31.87% 6.24 90.60 99.52

APRIL 0.08% 90.22% 9.71% 5. 58 19. 92 28. 17

T3 �� T8 (Tiger county areas and roads)

None 0.00% 0.00% 100.00% 0.00 2546.48 2543.37

5C+CH 0.00% 22.79% 77.21% 16.21 1855.63 1878.73

APRIL 66.25% 30.77% 2.98% 25. 64 58. 23 90. 77

and distance queries. In addition, Teng et al. [46] propose
IDEAL, a hybrid vector-raster polygonal approximation,
targeting point-in-polygon queries and point-to-polygon dis-
tance queries. The approximations in IDEAL are similar to
those of APRIL in that they capture information about Full
or Partial coverage of each cell, but they also have important
differences that render IDEAL approximations not appropri-
ate for spatial intersection joins. Specifically, in IDEAL, each
polygon is approximated by its own (local) grid, defined by
splitting the object’s MBR. Hence, the IDEAL grids of two
different objects are not necessarily aligned to each other and
may have different resolutions, as shown in Fig. 14a. Hence,

IDEAL approximations are not appropriate for intersection
(or distance) joins because aligning the two different grids of
two polygons (having different positions, cell size, and res-
olution) is hard and inference of polygon intersection from
the cell types if the cells are not perfectly aligned is not triv-
ial. Another difference between IDEAL and our work is that
cells in IDEAL are not grouped into intervals and interval
joins are not used as operations.

RAPTOR [38–40] joins a raster dataset (map of pixels,
where each pixel is associated with values such as tempera-
ture) with a vector dataset (e.g., set of polygons, linestrings,
or points). The objective ofRaptor-Join is to identify, for each

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 22 of 25 T. Georgiadis et al.

Fig. 14 Examples of IDEAL and Raptor object approximations

vector object o, the pixels that are relevant to o and associate
with o the values of these pixels to the object (e.g., aggregate
them). For example, if the vector object o is a polygon, the
relevant pixels to o are those whose centroids are included in
o. Hence, in Fig. 14b, the dashed polygon is relevant to the
cells in light-gray and the solid-border polygon is relevant to
the cells in dark-gray. To compute the Raptor-Join, in a pre-
processing step, all relevant cells to each object are identified
and stored in a tabular representation (called Flash Index),
with intervals of contiguous cells per row of the rastermatrix.
For example, the solid-border polygon is represented by three
tuples: {(5, [1, 2]), (6, [1, 2]), (7, [0, 3])}, implying that the
polygon spans columns 1–2 in rows 5 and 6, and columns
0–3 in row 7. This is reminiscent to our APRIL approxi-
mations, where each object is represented by intervals of
cells. However, raster representations of vector objects used
by RAPTOR have several important differences to APRIL.
First, for a cell to be included in a Raptor approximation, the
center of the cell should lie inside the polygon, whereas in
APRIL the cell should overlap with the polygon. This means,
for example, that cell (4,1) is not part of the solid-border poly-
gon approximation in Raptor, whereas it is part of its APRIL
approximation. Second, APRIL differentiates between Full
and Partial cells, whereas Raptor only has one type of cells.
The most important difference is that Raptor-join cannot be
used for the problemof spatial intersection joins thatwe study
in this paper, as it is possible that two polygons intersect but
their Raptor approximations share no common cell(s). In the
example of Fig. 14b, the two polygons intersect each other in
cells (4,1), (4,2), and (6,4). Cells (4,1), (4,2) are included in
the approximation of the dashed-border polygon but not in
the other one, whereas cell (6,4) is included in neither of the
two Raptor approximations. Hence, Raptor-join, if applied
for spatial intersection joins, would mistakenly prune this
pair of objects as false positive.
Speeding up the refinement step Checking whether two
polygons overlap requires point-in-polygon tests and find-
ing an intersection in the union of line segments that form
both polygons [9]. A point-in-polygon test bears a O(n) cost,
while the second problem can be solved in O(n log n) time

[35], where n is the total number of edges in both poly-
gons. Given a pair of candidate objects, Aghajarian et al. [2]
prune all line segments from the object geometries that do
not intersect their common MBR (CMBR) (i.e., the inter-
section area of their MBRs), before applying the refinement
step. This reduces the complexity of refinement, as a smaller
number of segments need to be checked for intersection.
In addition, if one object MBR is contained in the other,
then the point-in-polygon test is applied before the segment
intersection test. Polysketch [25] decomposes each object to
a set of tiles, i.e., small MBRs which include consecutive
line segments of the object’s geometry. Given two candidate
objects, the refinement step is then applied only for the tile-
pairs that overlap.A similar idea (trapezoidal decomposition)
was suggested by Brinkhoff et al. [9] and alternative polygon
decomposition approacheswhere suggested in [6]. PSCMBR
[24] combines Polysketch with the CMBR approach. Specif-
ically, for the two candidate objects, the overlapping pairs
of Polysketch tiles are found; for each such pair, the seg-
ments in the two tiles that do not overlap with the CMBR of
the tiles are pruned before refining the contents of the tiles.
Polysketch and PSCMBR focus on finding the intersection
points of two objects, hence, unlike our approach, they do not
identify true hits. The CMBR approach [2] is fully integrated
in our implementation; still the refinement cost remains high.
Finally, the ClippedBoundingBox (CBB) [37] is an enriched
representation of the MBR that captures the dead (unused)
space at MBR corners with a few auxiliary points, provid-
ing the opportunity of refinement step avoidance in the case
where object CBBs intersect only at their common dead-
space areas. CBBs can also be used by R-tree nodes to avoid
their traversal if the query range overlaps onlywith their dead
space.
Approximate spatial joins The approximate representation
of objects and approximate spatial query evaluation using
space-filling curves was first suggested by Orenstein [30].
Recent work explores the use of raster approximations for the
approximate evaluation of spatial joins and other operations
[22, 52, 53]. Our work is the first to approximate polygon
rasterizations as intervals for exact spatial query evaluation.
Spatial joins on GPUs The widespread availability of pro-
grammable GPUs has inspired several research efforts that
leverage GPUs for spatial joins [1, 2, 24, 25, 44]. Sun et
al. [44] accelerated the join refinement step by incorporat-
ing GPU rasterization as an intermediate filter. This filter
identifies only true negatives using a low resolution, and
has thus limited pruning effectiveness. Aghajarian et al. [1,
2] proposed a GPU approach to process point-polygon and
polygon-polygon joins for datasets that can be accommo-
dated in GPU memory. Liu et al. [24, 25] also proposed
GPU-accelerated filters to reduce the number of refinements.
These filters [1, 2, 24, 25], in contrast to APRIL, do not
identify true hits, but rather focus on finding the intersec-

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 23 of 25 8

tion points between a candidate pair. Furthermore, the above
approaches [1, 2, 24, 25] do not involve rasterization and rely
on CUDA, which is exclusive to NVIDIA GPUs. A recent
line of work [14, 15, 51, 52] proposes to use the GPU ras-
terization pipeline as an integral component of spatial query
processing. Doraiswamy et al. [14, 15] introduced a spatial
data model and algebra that is designed to exploit modern
GPUs. Their approach leverages a data representation called
canvas, which stores polygons as collections of pixels. The
canvas includes a flag that differentiates between pixels that
lie on the boundary of the polygon and those that are entirely
covered by it. Although current-generation GPUs can han-
dle millions of polygons at fast frame rates, the evaluation
of spatial queries is still dominated by other costs, such as
triangulating polygons and performing I/Os [15].
Scalability in spatial data management The emergence of
cloud computing has led to many efforts to scale out spa-
tial data management [31]. SJMP [57] is an adaptation of
the PBSM spatial join algorithm [33] for MapReduce. Other
spatial data management systems that use MapReduce or
Spark and handle spatial joins include Hadoop-GIS [3], Spa-
tialHadoop [16], Magellan [43], SpatialSpark [55], Simba
[54], and Apache Sedona [56]. These systems perform spa-
tial partitioning of the data and distribution of the partitions
to different machines, in order to improve scalability of spa-
tial data management and query processing. Each partition is
typically indexed by a data structure such as the R-tree or the
quadtree, which facilitate spatial query evaluation. Regard-
ing spatial intersection joins, all the aforementioned systems
focus only on the filter step and forward all candidate pairs
directly to the refinement phase, which is implemented with
the help of off-the-shelf libraries such as JTS.2 APRIL is
orthogonal to the data partitioning approaches applied by
these systems in the sense that its intermediate filter can fol-
low any MBR filter or spatial index. The enhanced filtering
of the added intermediate step reduces the amount of can-
didate pairs that must be geometrically refined, significantly
improving the overall performance of spatial intersection join
evaluation in them. Besides, as discussed in Sect. 5.2, ras-
terization and APRIL object approximations can be applied
independently to each one of the space-oriented partitions
used by such systems.

9 Conclusions

In this paper, we proposed a technique that represents raster
approximations of polygons as sets of intervals, offering a
fast and effective intermediate step between the filter and the
refinement steps of polygon intersection joins. RI, the first
version of our approach, approximates each object as a sin-

2 locationtech.github.io/jts/

gle list of intervals that include the raster cells that intersect
the object; together with each interval we store a bitstring
that encodes the classes of cells (Full, Strong, Weak) in
the interval. APRIL is an enhanced version of our method
that captures the cells that are partially or fully covered by
the object using two separate lists of intervals, eliminating
the need for the space-consuming and complex bitstring.
APRIL’s intermediate filter is different from that of RI in
that it performs a pipeline of three interval joins instead of
a single interval join paired with bitwise operations on the
bitstrings.

As we have shown experimentally, compared to previous
approaches [9, 58], APRIL is (i) lightweight, as it represents
each polygon by two lists of integers that can be effectively
compressed; (ii) effective, as it typically filters the majority
ofMBR-join pairs as true negatives or true positives; and (iii)
efficient to apply, as it only requires at most three linear scans
over the interval lists. Specifically, RI and APRIL offer at
least 3x speedup in end-to-end spatial intersection joins com-
pared to previous intermediate filters (raster approximations
[58], 5C-CH [9]). At the same time, the space complexity of
RI and APRIL is relatively low and the approximations can
easily be accommodated in main memory. Compared to RI
approximations, APRIL approximations aremuch cheaper to
construct, occupy significantly less space, offer amuch faster
intermediate filter, and significantly improve the end-to-end
cost of spatial intersection joins.

APRIL is a general approximation for polygons that can
also be used in selection queries, within-joins, and joins
between polygons and linestrings. We propose a compres-
sion technique forAPRILandcustomizations that trade space
for filter effectiveness. Finally, we propose an efficient con-
struction technique for APRIL approximations that is orders
of magnitude faster than the rasterization-based techniques
used for other filters.

In the future, we plan to investigate further the problem
of interval join order optimization and explore the effective-
ness of APRIL for 3D objects (e.g., polytopes). We also aim
to investigate integrating APRIL into a big distributed spa-
tial database management system, such as Apache Sedona,
as well as an open-source spatial database system, such as
PostGIS.

Acknowledgements The research project was supported by the Hel-
lenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd
Call for H.F.R.I. Research Projects to support Faculty Members &
Researchers” (Project Number: 02757).

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 8 Page 24 of 25 T. Georgiadis et al.

References

1. Aghajarian, D., Prasad, S.K.: A spatial join algorithm based on
a non-uniform grid technique over GPGPU. In: E.G. Hoel, S.D.
Newsam, S. Ravada, R. Tamassia, G. Trajcevski (eds.) Proceed-
ings of the 25th ACM SIGSPATIAL International Conference on
Advances inGeographic Information Systems,GIS 2017, Redondo
Beach, CA, USA, November 7-10, 2017, pp. 56:1–56:4. ACM
(2017)

2. Aghajarian, D., Puri, S., Prasad, S.K.: GCMF: an efficient end-to-
end spatial join system over large polygonal datasets on GPGPU
platform. In: Proceedings of the 24th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information
Systems, GIS 2016, Burlingame, California, USA, October 31 -
November 3, 2016, pp. 18:1–18:10. ACM (2016)

3. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.H.:
Hadoop-gis: a high performance spatial data warehousing system
over mapreduce. Proc. VLDB Endow. 6(11), 1009–1020 (2013)

4. Amanatides, J., Woo, A.: A fast voxel traversal algorithm for ray
tracing. In: 8thEuropeanComputerGraphicsConference andExhi-
bition, Eurographics 1987, Amsterdam, The Netherlands, August
24-28, 1987, Proceedings. North-Holland / Eurographics Associa-
tion (1987)

5. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.:
Scalable sweeping-based spatial join. In: A. Gupta, O. Shmueli,
J.Widom (eds.) VLDB’98, Proceedings of 24rd International Con-
ference on Very Large Data Bases, August 24-27, 1998, New York
City, New York, USA, pp. 570–581. Morgan Kaufmann (1998)

6. Badawy, W.M., Aref, W.G.: On local heuristics to speed up
polygon-polygon intersection tests. In:ACM-GIS ’99, Proceedings
of the 7th International Symposium on Advances in Geographic
Information Systems, November 2-6, 1999, Kansas City, USA, pp.
97–102. ACM (1999)

7. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.:
Computational geometry: algorithms and applications, 3rd Edition.
Springer (2008)

8. Bresenham, J.: Algorithm for computer control of a digital plotter.
IBM Syst. J. 4(1), 25–30 (1965)

9. Brinkhoff, T., Kriegel, H., Schneider, R., Seeger, B.: Multi-step
processing of spatial joins. In: R.T. Snodgrass, M. Winslett (eds.)
Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data, Minneapolis, Minnesota, USA, May 24-
27, 1994, pp. 197–208. ACM Press (1994)

10. Brinkhoff, T.,Kriegel,H., Seeger, B.: Efficient processing of spatial
joins using r-trees. In: Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington,
DC, USA, May 26-28, 1993, pp. 237–246. ACM Press (1993)

11. cruppstahl: libvbyte - Fast C Library for 32bit and 64bit Integer
Compression (2017). https://github.com/cruppstahl/libvbyte

12. Cutting, D.R., Pedersen, J.O.: Optimizations for dynamic inverted
index maintenance. In: SIGIR’90, 13th International Conference
on Research and Development in Information Retrieval, Brussels,
Belgium, 5-7 September 1990, Proceedings, pp. 405–411. ACM
(1990)

13. Dittrich, J., Seeger, B.: Data redundancy and duplicate detection in
spatial join processing. In: D.B. Lomet, G.Weikum (eds.) Proceed-
ings of the 16th International Conference onData Engineering, San
Diego,California,USA, February 28 -March 3, 2000, pp. 535–546.
IEEE Computer Society (2000)

14. Doraiswamy, H., Freire, J.: A gpu-friendly geometric data model
and algebra for spatial queries. In: Proceedings of the 2020 Interna-
tional Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020,
pp. 1875–1885. ACM (2020)

15. Doraiswamy, H., Freire, J.: SPADE: gpu-powered spatial database
engine for commodity hardware. In: 38th IEEE International
Conference on Data Engineering, ICDE 2022, Kuala Lumpur,
Malaysia, May 9-12, 2022, pp. 2669–2681. IEEE (2022)

16. Eldawy, A., Mokbel, M.F.: Spatialhadoop: A mapreduce frame-
work for spatial data. In: J. Gehrke, W. Lehner, K. Shim, S.K. Cha,
G.M. Lohman (eds.) 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015,
pp. 1352–1363. IEEE Computer Society (2015)

17. Fang, Y., Friedman, M.T., Nair, G., Rys, M., Schmid, A.: Spatial
indexing in microsoft SQL server 2008. In: Proceedings of the
ACMSIGMOD International Conference onManagement of Data,
SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pp.
1207–1216 (2008)

18. Georgiadis, T., Mamoulis, N.: Raster intervals: An approximation
technique for polygon intersection joins. In: Proceedings of the
2023 ACM SIGMOD International Conference on Management
of Data, Seattle, Washington, USA, June (2023)

19. Guttman, A.: R-trees: A dynamic index structure for spatial search-
ing. In: B. Yormark (ed.) SIGMOD’84, Proceedings of Annual
Meeting, Boston, Massachusetts, USA, June 18-21, 1984, pp. 47–
57. ACM Press (1984)

20. Hilbert, D.: Über die stetige abbildung einer linie auf ein flächen-
stück. Mathematische Annalen 38(1), 459–460 (1891)

21. Jacox, E.H., Samet, H.: Spatial join techniques. ACM Trans.
Database Syst. 32(1), 7 (2007)

22. Kipf, A., Lang, H., Pandey, V., Persa, R.A., Anneser, C., Tzirita
Zacharatou, E., Doraiswamy, H., Boncz, P.A., Neumann, T., Kem-
per, A.: Adaptive main-memory indexing for high-performance
point-polygon joins. In: Proceedings of the 23rd International
Conference on Extending Database Technology, EDBT 2020,
Copenhagen, Denmark, March 30 - April 02, 2020, pp. 347–358.
OpenProceedings.org (2020)

23. Lemire, D., Boytsov, L.: Decoding billions of integers per second
through vectorization. CoRR abs/1209.2137 (2012)

24. Liu, Y., Puri, S.: Efficient filters for geometric intersection compu-
tations using GPU. In: C. Lu, F. Wang, G. Trajcevski, Y. Huang,
S.D.Newsam,L.Xiong (eds.) SIGSPATIAL ’20: 28th International
Conference on Advances in Geographic Information Systems,
Seattle,WA,USA,November 3-6, 2020, pp. 487–496.ACM(2020)

25. Liu, Y., Yang, J., Puri, S.: Hierarchical filter and refinement system
over large polygonal datasets on CPU-GPU. In: 26th IEEE Inter-
national Conference on High Performance Computing, Data, and
Analytics, HiPC 2019, Hyderabad, India, December 17-20, 2019,
pp. 141–151. IEEE (2019)

26. Mamoulis, N., Papadias, D.: Slot index spatial join. IEEE Trans.
Knowl. Data Eng. 15(1), 211–231 (2003)

27. Museth, K.: Hierarchical digital differential analyzer for efficient
ray-marching in openvdb. In: Special Interest Group on Computer
Graphics and Interactive Techniques Conference, SIGGRAPH ’14,
Vancouver, Canada, August 10-14, 2014, Talks Proceedings, p.
40:1. ACM (2014)

28. Nobari, S., Qu, Q., Jensen, C.S.: In-memory spatial join: The data
matters! In: Proceedings of the 20th International Conference on
ExtendingDatabase Technology, EDBT2017, Venice, Italy,March
21-24, 2017, pp. 462–465. OpenProceedings.org (2017)

29. Nobari, S., Tauheed, F.,Heinis, T.,Karras, P.,Bressan, S.,Ailamaki,
A.: TOUCH: in-memory spatial join by hierarchical data-oriented
partitioning. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013, pp. 701–712. ACM (2013)

30. Orenstein, J.A.: Redundancy in spatial databases. In: Proceedings
of the 1989 ACM SIGMOD International Conference on Manage-
ment of Data, Portland, Oregon, USA, May 31 - June 2, 1989, pp.
295–305. ACM Press (1989)

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Raster Interval Object... Page 25 of 25 8

31. Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are
modern spatial analytics systems? Proc. VLDB Endow. 11(11),
1661–1673 (2018)

32. Papadakis, G., Mandilaras, G.M., Mamoulis, N., Koubarakis, M.:
Progressive, holistic geospatial interlinking. In: WWW ’21: The
Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April
19-23, 2021, pp. 833–844. ACM / IW3C2 (2021)

33. Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join. In:
Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data, Montreal, Quebec, Canada, June 4-6,
1996, pp. 259–270. ACM Press (1996)

34. Reynolds, C.: Filling polygons. Architecture Machinations,
Department of Architecture, Massachusetts Institute of Technol-
ogy, Room 9, 518 (1977)

35. Shamos, M.I., Hoey, D.: Geometric intersection problems. In:
17th Annual Symposium on Foundations of Computer Science,
Houston, Texas, USA, 25-27 October 1976, pp. 208–215. IEEE
Computer Society (1976)

36. Shinya, M., Forgue, M.: Interference detection through rasteriza-
tion. Comput. Animat. Virtual Worlds 2(4), 132–134 (1991)

37. Sidlauskas, D., Chester, S., Tzirita Zacharatou, E., Ailamaki, A.:
Improving spatial data processing by clipping minimum bounding
boxes. pp. 425–436. IEEE Computer Society (2018)

38. Singla, S., Eldawy, A.: Raptor zonal statistics: Fully distributed
zonal statistics of big raster + vector data. In: 2020 IEEE Interna-
tional Conference on Big Data (IEEE BigData 2020), Atlanta, GA,
USA, December 10-13, 2020, pp. 571–580. IEEE (2020)

39. Singla, S., Eldawy, A., Diao, T., Mukhopadhyay, A., Scudiero, E.:
Experimental study of big raster and vector database systems. In:
37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021, pp. 2243–2248. IEEE
(2021)

40. Singla, S., Eldawy, A., Diao, T., Mukhopadhyay, A., Scudiero, E.:
The raptor join operator for processing big raster + vector data. In:
SIGSPATIAL ’21: 29th International Conference on Advances in
Geographic Information Systems, Virtual Event / Beijing, China,
November 2-5, 2021, pp. 324–335. ACM (2021)

41. Smith, A.R.: Tint fill. In: Proceedings of the 6thAnnual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH
1979, Chicago, Illinois, USA, August 8-10, 1979, pp. 276–283.
ACM (1979)

42. SpatialHadoop: TIGER datasets (2015). http://spatialhadoop.cs.
umn.edu/datasets.html

43. Sriharsha, R.: Magellan: Geospatial analytics using spark. URL:
https://github.com/harsha2010/magellan

44. Sun, C., Agrawal, D., El Abbadi, A.: Hardware acceleration for
spatial selections and joins. In: Proceedings of the ACM SIGMOD
International Conference onManagement of Data, San Diego, Cal-
ifornia, USA, p. 455-466. ACM (2003)

45. Teng, D.: IDEAL (2021). https://github.com/tengdj/IDEAL
46. Teng, D., Baig, F., Sun, Q., Kong, J., Wang, F.: IDEAL: a vector-

raster hybrid model for efficient spatial queries over complex
polygons. In: 22nd IEEE International Conference onMobile Data
Management, MDM 2021, Toronto, ON, Canada, June 15-18,
2021, pp. 99–108. IEEE (2021)

47. Theocharidis, K., Liagouris, J., Mamoulis, N., Bouros, P., Terrovi-
tis, M.: SRX: efficient management of spatial RDF data. VLDB J.
28(5), 703–733 (2019)

48. Thiel, L.H., Heaps, H.S.: Programdesign for retrospective searches
on large data bases. Inf. Storage Retr. 8(1), 1–20 (1972)

49. Tsitsigkos, D., Bouros, P., Mamoulis, N., Terrovitis, M.: Paral-
lel in-memory evaluation of spatial joins. In: Proceedings of the
27th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, SIGSPATIAL 2019, Chicago,
IL, USA, November 5-8, 2019, pp. 516–519. ACM (2019)

50. Tsitsigkos, D., Lampropoulos, K., Bouros, P., Mamoulis, N., Ter-
rovitis, M.: A two-layer partitioning for non-point spatial data. In:
37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021, pp. 1787–1798. IEEE
(2021)

51. Tzirita Zacharatou, E., Doraiswamy, H., Ailamaki, A., Silva, C.T.,
Freire, J.: GPU rasterization for real-time spatial aggregation over
arbitrary polygons. Proc. VLDB Endow. 11(3), 352–365 (2017)

52. Tzirita Zacharatou, E., Kipf, A., Sabek, I., Pandey,V., Doraiswamy,
H., Markl, V.: The case for distance-bounded spatial approxima-
tions. In: 11th Conference on Innovative Data Systems Research,
CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceed-
ings. www.cidrdb.org (2021)

53. Winter, C., Kipf, A., Anneser, C., Tzirita Zacharatou, E., Neumann,
T., Kemper, A.: Geoblocks: A query-cache accelerated data struc-
ture for spatial aggregation over polygons. In: Proceedings of the
24th International Conference on Extending Database Technology,
EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021, pp. 169–180.
OpenProceedings.org (2021)

54. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: Efficient
in-memory spatial analytics. In: F. Özcan, G. Koutrika, S. Madden
(eds.) Proceedings of the 2016 International Conference on Man-
agement of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pp. 1071–1085. ACM (2016)

55. You, S., Zhang, J., Gruenwald, L.: Large-scale spatial join query
processing in cloud. In: CloudDB, ICDE Workshops, pp. 34–41
(2015)

56. Yu, J., Zhang, Z., Sarwat, M.: Spatial data management in apache
spark: the geospark perspective and beyond.GeoInformatica 23(1),
37–78 (2019)

57. Zhang, S., Han, J., Liu, Z., Wang, K., Xu, Z.: SJMR: parallelizing
spatial joinwithmapreduce on clusters. In: Proceedings of the 2009
IEEE International Conference on Cluster Computing, August 31 -
September 4, 2009, New Orleans, Louisiana, USA, pp. 1–8. IEEE
Computer Society (2009)

58. Zimbrao, G., de Souza, J.M.: A raster approximation for processing
of spatial joins. In: VLDB’98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27, 1998, New
York City, New York, USA, pp. 558–569 (1998)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

