Efficient Placement of Decomposable Aggregation Functions for
Stream Processing over Large Geo-Distributed Topologies

Xenofon Chatziliadis

Technische Universitat Berlin
x.chatziliadis@tu-berlin.de

Steffen Zeuch

Technische Universitiat Berlin
steffen.zeuch@tu-berlin.de

ABSTRACT

A recent trend in stream processing is offloading the computation
of decomposable aggregation functions (DAF) from cloud nodes to
geo-distributed fog/edge devices to decrease latency and improve
energy efficiency. However, deploying DAFs on low-end devices
is challenging due to their volatility and limited resources. Addi-
tionally, in geo-distributed fog/edge environments, creating new
operator instances on demand and replicating operators ubiqui-
tously is restricted, posing challenges for achieving load balancing
without overloading devices. Existing work predominantly focuses
on cloud environments, overlooking DAF operator placement in
resource-constrained and unreliable geo-distributed settings.

This paper presents NEMO, a resource-aware optimization ap-
proach that determines the replication factor and placement of
DAF operators in resource-constrained geo-distributed topologies.
Leveraging Euclidean embeddings of network topologies and a set
of heuristics, NEMO scales to millions of nodes and handles topo-
logical changes through adaptive re-placement and re-replication
decisions. Compared to existing solutions, NEMO achieves up to
6x lower latency and up to 15X reduction in communication cost,
while preventing overloaded nodes. Moreover, NEMO re-optimizes
placements in constant time, regardless of the topology size. As a
result, it lays the foundation to efficiently process continuous data
streams on large, heterogeneous, and geo-distributed topologies.
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1 INTRODUCTION

Internet of Things (IoT) applications often require real-time analy-
sis of large amounts of raw sensor data sourced from distributed
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locations across vast geographical areas. For instance, in a smart
grid scenario described by Lepping et al. [33], an electricity provider
monitors millions of sensors in wind turbine farms and solar pan-
els distributed across various geographical regions. The generated
sensor data is then transmitted over the Internet to the cloud for
real-time analysis. To reduce latency and communication overhead,
the provider uses stream processing engines (SPEs) to perform par-
tial computations on devices outside the cloud, such as Raspberry
PIs at the edge or fog servers. The paradigm of leveraging resources
of the cloud, fog, and edge is called osmotic computing [63].

To handle the fact that processing nodes can be overloaded by the
huge amounts of data generated by such IoT applications, SPEs often
scale horizontally on multiple computing nodes using data paral-
lelism. This involves increasing the number of parallel instances
(replicas) of operators, with each replica processing a subset of
incoming data in parallel [26, 28]. A popular approach is hereby to
parallelize the computation of DAFs, such as min, max, count, or
sum, which are highly prevalent in stream processing [62, 67] and
can be easily replicated due to their decomposability [39, 41, 53].

Challenges. Placing DAFs closer to the data source offers many
benefits but also presents new challenges. In particular, cloud-based
SPEs operate on a well-defined infrastructure with high-end servers
and reliable network connections. In contrast, osmotic comput-
ing environments involve geo-distributed, resource-constrained
devices and exhibit dynamism, volatility, and large scale [13, 54].
The unpredictable rate at which the sources produce data and the
large number of resource-constrained devices, make it impossible
to configure the operator replication degree of DAFs manually, po-
tentially leading to quality of service (QoS) violations and node
overloading. Therefore, an effective operator placement (OP) ap-
proach for osmotic computing environments must consider the
following key aspects. First, it should scale seamlessly to extremely
large topologies comprising millions of nodes. Second, it should
efficiently handle topological changes that are inherent in dynamic
environments (e.g., mobile devices) [48]. Third, it should prevent
the over-utilization of resource-constrained nodes.

State-of-the-Art. Previous research in stream processing has
primarily targeted cloud topologies and treats DAFs as general
operators. On the one hand, researchers have explored various
techniques to identify a good placement considering different mod-
eling assumptions, optimization goals, and heuristics [7, 22, 32, 49].
On the other hand, operator replication techniques were investi-
gated to prevent over-utilization during reconfiguration of deployed
workloads [3, 23, 30, 37, 40]. However, none of these approaches



have considered replication as part of the optimization process dur-
ing operator placement. They all perform placement first and only
handle replication during runtime if performance problems occur.
However, existing SPEs show that this two-stage approach leads to
significant downtimes, as it requires a complete re-computation of
the placement and a re-scheduling of the application [8, 20]. The
first to propose a combined approach that jointly handles replication
and placement are Cardellini et al. [8]. To provide an optimal solu-
tion to this NP-hard problem, they use integer linear programming
(ILP). However, this solution does not scale for applications on large
topologies with hundreds of nodes or involving wireless devices [7],
as the search space grows exponentially in such environments.

A second line of research explores scalable aggregation approaches
for dynamic and large geo-distributed topologies, especially in
Wireless Sensor Networks (WSNs). WSNs achieve scalable DAF
computation through hierarchical data aggregation, reducing both
load and network traffic [65]. In this approach, sensors do not trans-
mit data to the nearest base station directly; instead, they form a
hierarchical network dynamically where DAFs are replicated to
consolidate data at intermediate nodes. These aggregation networks
are typically organized into clusters, trees, chains, or a combination
of these structures. Aggregation approaches in WSNs are typically
designed for managing periodic or event-triggered data collection
from battery-powered, wireless devices to the nearest base station.
However, stream processing in osmotic computing environments
involves continuous, real-time processing of multiple data streams
that extend to cloud servers and gateways beyond the nearest base
station. It also requires handling more complex operations, such
as window functions. Finally, existing approaches in WSNs are
resource-agnostic and may lead to node over-utilization [41, 65].

Our Solution. In this paper, we introduce NEMO, a scalable,
resource-aware placement approach tailored to SPEs in osmotic
computing environments, specifically addressing the placement
and replication of DAF operators. Drawing inspiration from WSNs,
NEMO achieves load balancing and reduces communication by
replicating DAFs and forming an aggregation tree among them.
Furthermore, instead of solving the NP-hard OP problem on a
discrete set of nodes, NEMO takes a different approach by projecting
the network topology using Network Coordinate Systems (NCS)
into a continuous space. This transformation enables NEMO to
approximate the OP problem using an iterative algorithm. As a
result, NEMO can efficiently identify the degree and placement of
replicas for large topologies with millions of nodes in linear time.

Results. We compare NEMO against heuristics used in SPEs
and adaptive aggregation approaches used in WSNs. Furthermore,
we integrate NEMO in the optimizer of the IoT data management
system (IoTDMS) NebulaStream [68]. We conduct experiments on
various settings and workloads based on both simulations and an
end-to-end deployment on a local cluster of Raspberry PIs. Un-
like state-of-the-art approaches that are resource oblivious and
may overload nodes, NEMO avoids over-utilization entirely. Fur-
thermore, NEMO achieves latency improvements of up to 6x and
communication cost reduction of up to 15X for various deployments.
Finally, NEMO can re-optimize placements in constant time.

The remainder of this paper is structured as follows. In Section 2,
we present the necessary background information. Section 3 de-
scribes the metrics and system model of our approach, along with a

{ttr, 2, @A M, 8)}

Final
@ Window / ' \
{(t, 2. @/, 5)} Sink {(t1, to, D> 3)}
® Partial
Windows

/ Worker \ / Worker \

) WIL:;:\:VS 22,2} {1 2@.3)  {t, tE.2) (b tp, 1)}
i >
= * ¢

Figure 1: Example of distributed windowing, where partial
count-aggregates are computed on remote worker nodes.
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formal problem definition and accompanying proofs. Our approach
is described in detail in Section 4, and its evaluation is presented in
Section 5. We then explore related work in Section 6, followed by
our concluding remarks in Section 7.

2 BACKGROUND

In this section, we outline the stream processing semantics of dis-
tributed windowing operators, which NEMO replicates and places
across geo-distributed nodes, and introduce the concept of network
coordinate systems, which serve as the basis for NEMO’s heuristics.

2.1 Stream Processing Semantics

In stream processing, sources produce data streams and sinks con-
sume them. Computation on data streams happens in parallel across
multiple nodes or machines called workers. Data streams are typi-
cally unbounded and require discretization using window operators
to perform computations. Window operators are usually defined
by a window type, a window measure, and a window function [61].
Window types include tumbling (fixed-size, non-overlapping) and
sliding (overlapping) windows. Window measures are time-based
(triggered by a timestamp) or count-based (ending after a certain
number of events). Window functions perform computations on
window records, and are categorized as decomposable (incremen-
tally computed) or holistic (requiring access to all records).

SPEs can distribute load by replicating window operators with
decomposable functions and deploying them on partitioned data
subsets that can be processed independently on different nodes.
Consequently, load distribution involves distributed window com-
putation. Figure 1 depicts an example of counting the total number
of events with distributed windows on a topology with four sources
and two worker nodes. The sources produce in @ individual events
from the data streams and generate in @ local window slices, which
are discrete partitions of the data streams that map an event to a
time interval. Next, in @ the workers calculate partial interme-
diate aggregates from the window slices. Finally, in @ the sink
node receives the partial window aggregates and computes the fi-
nal result through window merging. Distributed windowing allows
processing window slices independently, resulting in a hierarchi-
cal processing tree [5]. This allows for greater flexibility in data
processing and enables nodes to operate independently. However,
distributed windowing is restricted to decomposable functions, as
holistic functions do not allow partial aggregate computation [67].



2.2 Network Coordinate Systems

Distributed systems often need to identify low-latency network
paths to meet application requirements [49, 51]. A naive approach
is to measure the round-trip times (RTT) among all nodes, which
incurs a high overhead in large distributed systems. To reduce the
number of measurements, Network Coordinate Systems (NCSs)
have been proposed, which predict latencies with an estimation
error instead of relying solely on direct measurements.

NCSs typically follow two approaches [15]. Most traditional
NCSs are Euclidean-based NC (ENC) systems [17, 19, 45, 46] that
create an abstraction of the topology and map all nodes to an n-
dimensional cost space [49, 51]. Every node v € V in the cost space
has a position X, such that the Euclidean distance d (Wv_}) between
two arbitrary nodes v; and v; corresponds to the latency estimate.
ENC systems require the estimates to satisfy the triangle inequality,
which is a fundamental property of distances in Euclidean spaces
stating that the shortest distance between two points is a straight
line. However, Internet latencies often violate this inequality due
to the complexity of network routing, leading to inaccuracies in
ENC systems. Matrix factorization-based approaches (MFNC) ad-
dress this limitation by removing the triangle inequality constraint,
typically resulting in better prediction accuracy than ENC sys-
tems [14, 34, 42]. However, MENC approaches do not map nodes
to a Euclidean space, which provides advantages like intuitive dis-
tance calculations, straightforward geometric interpretations, and
the ability to apply Euclidean algorithms and transformations for
various analyses and optimizations [7, 49, 51].

3 CONCEPTS AND FORMALISM

SPEs take a user query as input and create a logical operator plan
that represents the processing pipeline and specifies the order and
type of operations and their dependencies. Figure 2a shows a logical
operator plan for an example of distributed windowing introduced
in Section 2.1. The plan has multiple sources, a slice creation opera-
tor, a slice merging operator, and a window computation operator.
The replication plan extends the basic logical operator plan by spec-
ifying the number of replicas of each operator. Figure 2b shows
a replication plan variant that includes multiple slice creation op-
erator instances. Finally, the physical plan in Figure 2c captures
the mapping from logical operators (including replicas) to physical
nodes. In this example, the three instances of the slice creation
operator are placed on different nodes to balance the workload.
NEMO takes a logical plan, like Figure 2a, as input and determines
the number of replicas and their placement.

3.1 Metrics

NEMO uses latencies and computational capacities as metrics for
making operator placement and replication decisions.

Latency. In a NCS, the proximity between two nodes corre-
sponds to their latency. NEMO assumes that all nodes have coordi-
nates in a NCS and can communicate with each other directly or via
intermediate hops. The lowest latency in the NCS occurs when two
nodes v;, v; € V communicate directly, which corresponds to their
Euclidean distance. If the nodes communicate via an intermediate
node vy, the latency is d(v;v;) + d(TvJ-) > d(TVj). However, in

(a) Log. Plan

(b) Replication Plan (c) Physical Plan
Figure 2: Example of a) a logical plan with distributed win-
dowing operators, b) its replication plan, and c) the physical
plan with the placed operators on five nodes (N1-N5).

real-world networks, attaining the lowest latency does not nec-
essarily result from direct communication due to the violation of
the triangle inequality (TIV) (cf. Section 2.2). We provide a more
in-depth exploration of the implications of TIV in Section 5.
Capacities. We model the maximum computational capacity of
anode v; as C¢(v;) € N. Nodes with high capacities are typically
servers within the cloud, while those with lower ones are edge or
sensor devices. We consider v; to be overloaded if Cy, (v;) > C¢(v;),
where C,, represents the utilized capacity. Finally, C, represents the
required capacity, and C4 = C; — Cy, the available capacity.

3.2 System Model

In the following, we formally describe the underlying concepts of
our approach, including the logical operator plan, replication of
operators, and the resulting replication plan.

Logical Plan. We model a query as a directed acyclic graph
(DAG) of connected operators as proposed by Rizou et al. [51].
Hereby, an operator DAG G = {Q,S,A,L} comprises a set Q =
{w1, ..., wn} of operators connected by a set L = {@010;, ..., @jwn} of
links, where link ©;0; € Q X Q denotes that operator w; produces
a stream consumed by operator ;. L represents the set of in- and
out-going links attached to operator w;. For each ®;wj, the weight
w(w;w;) denotes the extent to which the capacity of the node
containing w; is utilized. The value of Cy, (v;) is thus calculated as
the sum of the weights of all incoming links to node v;. Additionally,
we designate two subsets S € Q and A C Q of operators as sources
and sinks, respectively. Sources only have outgoing links (i.e., they
only produce streams) and sinks have only incoming links (i.e., they
only consume streams). Sources and sinks are pinned operators,
i.e., their mapping to physical nodes is fixed, while other operators
can be assigned freely to any available node in V.

Replication. To model replication, we define an operator w €
Q using a set of attributes: ® = {w;g, Rig, Vi, p}. The combined
attributes operator ID w;; and replication ID R;; create a unique
identifier. v; denotes the node in the physical topology where the
operator is located, while p represents the number of operator
instances, which can be between 1 and in-deg(w). Pinned operators
have a pre-defined fixed placement and are, thus, not replicated.

Note that in cloud-based SPEs, parallel processing is often achieved
by replicating operators and running them on partitioned data [26,
28]. The partitioning process involves breaking down large data



streams into smaller parts that can be processed independently, typ-
ically through the application of a hash function [26]. In fog/edge
topologies, data is often generated by multiple geo-distributed
sources and is thus already partitioned inherently.

To limit the number of possible replicas and ensure that load
is reduced at every aggregation level, NEMO leverages the geo-
distribution-based partitioning scheme to set w(w;w;) = 1 and limit
the number of maximum replicas to the number of geo-distributed
sources, i.e., max in-deg(w) = [S|,Yo € Q. Although it is realis-
tic to assume that the load is reduced at every aggregation level
in WSNSs, certain stream processing workloads may deviate from
this norm. In such scenarios, intermediate operators may require
additional resources, possibly due to occurrences of backpressure,
necessitating the distribution of the data stream among multiple
downstream nodes [23]. In Section 4.4, we further describe an ex-
tension of NEMO that enables operator placement and replication
for arbitrary link weights and replica numbers, thereby allowing to
further partition a stream during intermediate aggregation.

Replication Plan. A replication plan G* is an extension of the
logical plan with replicated operators. G and G* distinguish them-
selves by |Q| and |L|. The total number of operators in the replica-
tion plan |Q*| € G* is equal to the sum of all replicas for each opera-
tor, where |Q| < |Q*|. The number of theoretical links between two
non-replicated operators wj, wr € Q can be |L(wj, wg)| = pj X pk.
To prevent duplicate tuples in the final results and comply with
partitioning restrictions, there are limitations on the links between
replicas of the same operator. We inherit the linking model from
WSNs [65], where nodes usually transmit data to a single destina-
tion to minimize energy utilization and network traffic. Formally
this means that replicas cannot share the same input, which greatly
reduces the number of possible links. We express this constraint as
Vo(w € Lj — o ¢ L), where L; and Ly are the sets of incoming
links for two replicas of the same operator. We denote the superset
of all logical plans that contain all permutations of possible paths
between operators for all possible p with G’.

3.3 Problem Definition

General Operator Placement Problem. In a distributed stream
processing system with a set of nodes V and a logical plan G, the
general problem of operator placement is to determine the op-
timal placement of operators on nodes while adhering to given
constraints and optimization objectives. We model this problem
with a binary function that maps each operator w € Q to a comput-
ing node v € V, where map(w, v) = 1 if the operator is deployed on
node v, otherwise map(w, v) = 0. The general operator placement
problem can be reduced to the general assignment problem, which
is well-known to be NP-hard [31].

Operator Placement and Replication Problem. Cardellini
etal. [8] showed that the general operator placement problem can be
extended to the operator placement and replication problem (OPR),
which seeks the optimal degree of replication for all operators
in addition to their placement, based on the given optimization
objective and constraints. Since this problem is an extension of the
general operator placement problem, it is also NP-hard.

Problem Formulation. The goal of OPR is to minimize the
total aggregated latency Lat(Q*) for all paths of operators from the

sources to the sinks while avoiding over-utilized nodes. Formally,
we have the following optimization problem:

min Lat(Q*) = Z d(@xwy),¥Q* € G*,VG* € G’

1
Y,y €Q* ( )

subject to the constraint
Cyu(vi) < Ce(vi),Yv; € V. (2)

3.4 Proofs

NEMO uses a heuristic approach to find a practical solution to the
OPR problem. This approach is based on insights derived from the
following theorems and their proofs.

THEOREM 3.1. The unconstrained optimal placement of all repli-
cated operators is equivalent to the unconstrained optimal placement
of the corresponding non-replicated operator.

Proor. Our approach determines replication based on the ca-
pacity of the optimal host node v’ (®) of a non-replicated operator.
When C, (V' (w)) > C¢ (V' (w)) after map(w, v) = 1, the operator is
replicated and distributed on other nodes to reduce the load in v’. If
Ct (V' (w)) = oo, then Cy(vi) < C¢(v;). In such cases no replication
is necessary, which corresponds to the optimal placement of the
non-replicated operator. m]

THEOREM 3.2. The unconstrained optimal placement for all replica-
tion plans is equivalent to the optimal placement of the corresponding
non-replicated logical plan.

ProoF. Theorem 3.1 proves that the placement of a single opera-
tor is independent of p, in case C; (v’ (w)) = o0, as no replication of
that operator is required. If C;(v;) = oo, Vi € V, all operators can be
placed at their optimal nodes and thus require no replication. O

THEOREM 3.3. The unconstrained optimal placement defined in
Equation (1) is a convex function. Therefore, an optimal placement of
all operators can be obtained through the optimal placement of each
individual operator. Formally, this can be expressed as:

min Lat(w;) U ... U Lat(wy,) = min Lat(wi, ..., wn) (3)

PRrROOF. As stated by Rizou et al. [51], the optimal placement
of a single unpinned operator (SOP) is equivalent to solving the
well-known Weber problem [9]. The convex objective function of
the Weber problem allows approximation through an iterative algo-
rithm. Solving the SOP problem for all operators leads to eventually
reaching a local optimal position for each, resulting in an all-local
optimal solution. The convexity property guarantees that any local
optimum is a global optimum, confirming that an all-local optimal
solution is also globally optimal. O

4 NEMO

This section describes NEMO, our scalable, resource-aware ap-
proach for determining the replication factor and placement of
DAFs. NEMO is tailored to large-scale, heterogeneous, geo-distributed
topologies in osmotic computing environments. It transforms a
logical plan into a physical one considering latency and available
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Figure 3: Progression of NEMO: In each iteration, a new aggregation level is added to reduce the number of incoming links to
the sink. The final aggregation nodes before transmitting data to the sink are highlighted.

resources. To this end, NEMO structures the topology hierarchi-
cally and identifies the level of replication for DAFs. NEMO’s main
optimization goal is minimizing latency to ensure IoT applications
meet their low latency requirements, while avoiding node overload-
ing. It can be also extended to accommodate additional constraints
and optimization objectives represented in a cost space. Next, we
introduce NEMO'’s heuristics (Section 4.1), describe its different
phases (Section 4.2) and re-optimizations (Section 4.3), and discuss
extensions (Section 4.4).

4.1 Heuristics

Solving OP on a discrete set of nodes is NP-hard [51]. However, in a
continuous space, OP can be solved with an iterative algorithm (cf.
Theorem 3.3). Therefore, NEMO’s key idea is projecting the topol-
ogy to a Euclidean space with a NCS. Although this projection may
introduce latency errors due to triangle inequality violations (cf.
Section 2.2), it reduces network overhead for collecting latency mea-
surements and increases NEMO’s robustness against continuous
latency noise in osmotic computing environments. Furthermore,
it enables NEMO to perform near-optimal operator placement in
linear time and re-optimizations in constant time.

For determining the placement we assume the existence of a
virtual node (i.e., NCS node without a mapping to a physical node) at
each operator’s optimal location. With this assumption, a mapping
between virtual and real nodes can be computed efficiently using a
neighborhood search that identifies real nodes with the smallest
distance from the virtual ones. To quickly adapt to changes (e.g.,
device unavailability), NEMO leverages Theorem 3.3 to calculate
the global optimum for each operator independently. As a result,
it can handle changes by relocating affected operators to the next
available nodes near the original virtual node without re-solving
the operator placement problem. The mapping from the continuous
NCS space to physical nodes introduces errors, as physical and
virtual nodes may not always be close to each other. These errors
lead to minor deviations from the optimum in terms of latency but
make NEMO computationally efficient, allowing it to scale to large
topologies (cf. Section 5.3).

4.2 Phases in NEMO

NEMO is an iterative approach with three phases, 1) pre-processing,
2) virtual operator placement, and 3) re-assignment and replication.

In Figure 3, we visualize the progression of NEMO on a simulated
topology with 1000 nodes. In the initial phase (Figure 3a), NEMO
limits the search space by grouping nodes into clusters based on
their latency in the cost space and identifies each cluster’s cen-
troid. For visualization purposes, the Figure also shows the Voronoi
diagram of the centroids. Next, NEMO iteratively creates an aggre-
gation tree over the topology, determining the level of replication
for DAFs. Figures 3b-d depict the evolution of the aggregation tree
across the initial three iterations. Each iteration introduces a new
level in the aggregation tree, systematically reducing the number
of incoming streams at the sink. In the figures, we highlight the
virtual nodes (2) that correspond to the optimal placement location
in the cost space and the final physical cluster heads (x). Note that
cluster heads are always close to a virtual node. In the remainder
of this section, we present each phase in detail.

First Phase: Grouping the Cost Space. The initial phase of
NEMO serves as a pre-processing phase, where the nodes in the
cost space are divided into distinct groups with minimal latency,
as depicted in Figure 3a. This grouping restricts the search space
for the subsequent phases of NEMO. The objective hereby is to
minimize the latency between all nodes within the same group,
while maximizing the latency to nodes outside the group. The goal
of our optimization function is, therefore, to maximize the mean
of the silhouette coefficient s(i) over all grouped nodes in the cost
space [52]. For each cluster C; and node i € Cj, the silhouette
coefficient is defined as:

b(i)-a()
s(i):{m if |Cy] > 1,

4
0 if |Cf] = 1 @

Hereby a(i) defines the cohesion of nodes within the same cluster
and b(i) defines the separation of nodes between different clusters:

1
a(i) = ——— d(i, j)
Gl -1 je;,#j ®
N o
b(i) = min il j;, d(i, j) (6)

|Cr| and |Cy| are the number of nodes in clusters I and J respec-
tively. The distance function d(i, j) defines the latency between
nodes i and j, which corresponds to the Euclidean distance in the



cost space. Clusters can be created using any arbitrary clustering
approach. In Fig. 3, NEMO uses the k-means algorithm [36].

Second Phase: Virtual Operator Placement. In the second
phase, NEMO calculates the optimal placement of an operator in
the cost space, referred to as a virtual node, between a given set of
upstream nodes and the sink. Algorithm 1 shows the pseudocode
of NEMO. It takes as input the source nodes grouped by their
clusters, the sink node, and an optional parameter that controls
the number of aggregation levels of the tree. When the required
capacities of the current upstream nodes (which initially correspond
to the sources) exceed the available capacities of the sink, NEMO
enters an iterative process. In each iteration, NEMO creates a new
partial window aggregation operator to extend the aggregation tree
with an additional level. The goal of each iteration is to identify
a set of physical nodes where the operator can be replicated. The
physical nodes for each cluster are stored in a lookup table (line 5).
Then, NEMO iterates over the clusters and determines the virtual
node for each of them using an iterative optimization algorithm
(line 7). Specifically, NEMO uses the spring relaxation algorithm
of Fruchterman and Reingold [25]. The main idea is to model each
link in the DAG of operators as a spring. Then, for each spring
si € L the low energy state can be determined by minimizing the
sum of potential energies E; stored in the springs:

. 1. .
argm}nZE,» = Z Ekis,-z (7)
Si g i

Using spring relaxation to determine the placement has several
advantages. First, its iterative nature allows seamless re-assignments
of operators to new nodes in case of topology changes. Second,
spring relaxation is decentralized and does not require coordina-
tion between nodes, allowing each latency cluster to operate in-
dependently. Finally, it can be naturally extended to recursively
add and compute the placement of new operators (e.g., partial win-
dows, window merging) and thus build a multi-hierarchical tree.
This feature is especially useful if additional levels are required,
for example, to further reduce load, enable fault tolerance, or meet
security restrictions in some networks.

Third Phase: Re-assignment and Replication. Finally, NEMO
determines the number and placement of replicas for each newly
created operator w;y in cluster k and iteration i to distribute the load
more evenly (line 8). To that end, it iterates through a sorted list n
of (vi, C4) tuples (nodes and their available capacities), allocating
capacities to each node until the total number of required capacities
is exhausted. The result is a placement list indicating the nodes
hosting the replicas and their allocated capacities. For example,
Cr =8,and ng = [(3,2),(1,4), (5,6), (2,10), (4,3)], results in py =
[(3,2),(1,4), (5,2)]. The replication factor for w;. is thus p;p = |pg|-

The elements in ny are initially nodes in the group with available
resources above a certain threshold ¢. If ny. does not provide enough
resources, NEMO augments it with potential cluster heads from
adjacent groups. This process is repeated until nodes with sufficient
resources for intermediate aggregation are found. In the worst case,
NEMO needs to consolidate all groups.

NEMO sorts the list ny using a distance function that penalizes
nodes with significantly lower capacities than others in their group.
This reduces the number of replicas and prevents the selection of

Input:clustered_sources, sink, limit
1 level « 0;
2 av < available_capacity(sink);
3 current_nodes « clustered_sources;
4 while av < load(current_nodes) & level < limit do

5 pn < map() ; // physical nodes
6 foreach cluster, nodes € current_nodes do

7 on « get_optimum(nodes, sink) ; // virtual node
8 pn|cluster] « reassign(nodes, vn);

9 end

10 current_nodes «— merge_clusters(pn);

11 level < level + 1;
12 end

Algorithm 1: The NEMO approach

nodes with proportionally fewer resources as cluster heads. The
function to calculate the penalized distance from a real node v; to a
virtual node v, is defined as:

Cr(vi)
Ca(vi)

The physical nodes hosting the newly created replicas are the
cluster heads for the recently formed aggregation level. After each
iteration, NEMO sets the cluster heads of the current level as the
new upstream nodes. Additionally, it merges clusters if cluster
heads in different groups overlap or are in close proximity. This
iterative process continues until the required capacities of the sink
do not exceed its available capacities. Each iteration reduces the
number of required capacities, guaranteeing NEMO’s convergence.

d' (vgvi) = *d(Vy7). ®)

4.3 Re-optimizations for Partial Changes

NEMO supports re-optimizations without the need to recompute
the entire operator placement when: 1) Adding sources (leaf nodes)
and workers (i.e., nodes with no active role in the current workload)
or, 2) Removing sources, cluster heads, and workers. We note that
changes in node coordinates are inherent in NCSs due to route
changes in IP-based routing protocols. NEMO addresses high di-
vergences in latency estimation errors (e.g., mobile devices) by re-
moving and re-adding nodes to the topology. Section 5.6 discusses
further details on our experiences with real topology changes.
Node Addition. When adding a new node to the topology,
NEMO computes at first its coordinates in the cost space. This
involves collecting latency measurements from a specified number
of nodes within its NCS neighborhood. The optimal coordinates
are subsequently determined by minimizing the relative distance
error, ensuring that Euclidean distances in the cost space match the
measured latencies as explained in Section 2.2. The time complexity
of coordinate computation for a single node is constant, as the
neighborhood size is fixed. If the new node is a source, NEMO
assigns it to the latency group with the nearest centroid. If the
group has available cluster heads with sufficient capacity, NEMO
designates the closest one as the parent node. For efficient searches,
NEMO keeps a spatial index on cluster heads and centroids and a
lookup table with available cluster heads in each group. If NEMO
cannot identify a suitable cluster head, it executes Algorithm 1



for the entire group. In the worst case, if NEMO cannot achieve a
balanced placement within the group, it recomputes the placement
for the entire topology. To avoid this, we set the threshold in the
third phase to be equal to the median of link weights, so that a
group can always have cluster heads with available capacities.

Node Removal. Before removing a node from the topology,
NEMO determines its role. If the node serves as a source or idle
worker, it can be seamlessly removed from both the topology and
the physical plan. If the node is a cluster head, NEMO attempts to
redistribute the workload among nodes in its subtree and other clus-
ter heads in the same group. The redistribution uses Algorithm 1 by
setting the sources of the cluster as upstream nodes and the parent
of the original cluster head as the sink. If a balanced placement
cannot be achieved, this process iterates over the entire group and,
in the worst-case, the entire topology. Strategies to reduce the like-
lihood of complete re-computation include increasing the value of
t, maintaining unassigned worker nodes as backups, and enlarging
the size of latency groups to provide additional capacities.

4.4 Extensions

In this section, we discuss how our approach could be extended to
handle arbitrary weights and restricted communication. We also
describe how we can extend NEMO’s optimization target.

Handling Arbitrary Weights. NEMO assumes that load is
reduced at every aggregation level. However, in high-throughput
stream processing workloads, additional replication of input streams
may be necessary during intermediate aggregation, requiring nodes
to have multiple output streams (i.e., multiple parents). In NEMO’s
system model, this implies that link weights w can have arbi-
trary values. Here, we introduce an extension of NEMO, called
NEMO-+, to support arbitrary weights. The main difference be-
tween NEMO and NEMO+ is the merging of the subtrees of the
different latency groups (cf. Algorithm 1, line 10), which affects
the list of sorted nodes ny during the re-assignment phase. In
NEMO, a tree t; can always be merged with another tree ¢, by
either adding the root node of #; as a new child to 1 or replac-
ing an existing child of t; with the root node of t;. In NEMO+,
this is no longer possible, as a node might require multiple par-
ents if the edge weight is greater than the capacity of the parent.
In NEMO+, merging subtrees of different latency groups is con-
trolled via two hyperparameters: step size ss and merge factor mf.
ss represents the spring constant for calculating the force between
the sink and the virtual nodes and affects how quickly the virtual
nodes converge toward the sink. mf controls the number of new
clusters for each tree level when merging cluster heads from mul-
tiple latency groups. The number of new clusters is calculated as
num_clusters = max(round(mf s num_old_clusters), 1). We note
that ss and mf require tuning. A poor choice of these hyperparam-
eters can have a detrimental effect on the placement quality and
may in certain cases prevent NEMO from converging.

Handling Restricted Communication. Restricted communi-
cation between devices in osmotic environments is a common issue
due to the absence of standardized communication protocols and
restricted network access [2]. In these environments, nodes typi-
cally communicate only through predefined gateways or border
routers, as seen, for example, in the FIT IoT Lab [1]. We address

such restricted communication in NEMO in two steps. First, we
replace the missing entries in the latency matrix M used for com-
puting network coordinates. If a path exists between two nodes
i, j over a gateway node g, we set M[i, j] = M[i,g] + M[g, j]. Addi-
tionally, we create an entry R[i, j] = (i, g, j) in an internal routing
table R, indicating the path between i, j. Then, we run NEMO nor-
mally on the cost space generated from M. If NEMO produces a
placement between i, j, where [i, j] € R, we resolve the path in the
physical plan. To achieve this, we introduce forwarding operators,
i.e., pinned operators on routing nodes that take an input stream
and produce an identical output stream. This ensures that routing
decisions are taken into account during placement.

Extending the Cost Space. To extend NEMO’s optimization ob-
jective with additional metrics beyond latency (e.g., QoS), we need
to integrate the new metrics into the cost space as new dimensions,
as shown in Pietzuch et al. [49]. For distance-based metrics (e.g.,
bandwidth), Euclidean NCSs like Vivaldi [19] can generate a cost
space given a matrix that represents the new distance metric be-
tween nodes. To modify the constraints of NEMO (e.g., reliability),
it suffices to adapt ny during the re-assignment phase. Specifically,
the sorting and inclusion of nodes in the list can be adapted to only
include nodes that meet specified constraints.

5 EVALUATION

We evaluate the performance of NEMO in two parts. In the first
part (Sections 5.2 - 5.6), we evaluate NEMO based on simulations
that are conducted on a local workstation within single-threaded
Python scripts. In these simulations, we use NCSs that are derived
from several real-world and artificial topologies. In the second part
(Section 5.7), we integrate NEMO in the optimizer of the [oTDMS
NebulaStream [68, 69] and evaluate an end-to-end deployment on
a distributed Raspberry PI cluster using five different queries.

5.1 Experimental Setup

Hardware. The simulations (Python scripts) are run single-
threaded on a local workstation with an Intel I7 9700k CPU and
32 GB of RAM. The end-to-end deployment experiments are per-
formed on a cluster of RaspberryPi model 4B devices, each having 4
GB of RAM and a Quad-Core Cortex-A72 (ARM v8), 64 Bit, 1.5 GHz
CPU. All devices are connected via Gigabit Ethernet to a switch.

Simulation. We use the Vivaldi algorithm [19] to create NCSs
from latency measurements of several real-world and artificial
topologies. We choose Vivaldi due to its widespread adoption [18,
38, 50, 57] and its ability to represent the topology in a Euclidean
space, as NEMO’s heuristics require (cf. Section 4.1). We use latency
measurements of the following topologies: 1) FIT IoT Lab [1] is an
IoT testbed deployed across different regions in France. Our evalua-
tion uses RTTs of 433 geographically distributed nodes comprising
different types of microcontrollers and four gateway servers. 2)
RIPE Atlas [56] is a widely used Internet measurement platform
that provides real-time data for network performance analysis. Our
evaluation uses RTTs of 723 anchors geo-distributed across the
globe. Anchors serve as fixed measurement points for latency and
routing behavior. 3) PlanetLab [16] measurements represent RTTs
from 335 nodes hosted by universities and research institutions
across Europe and North America. 4) King [27] contains latency



measurements of 1740 Internet DNS servers. 5) We also generate
artificial NCSs with varying latency distributions and sizes. The x-
axis of the NCSs ranges in [0, 100] and the y-axis in [—50, 50]. These
ranges represent a combined set of latency distributions found in
other topologies. Nodes belong to different Gaussian distributions
with uniformly distributed centers across the plane. The artificial
NCSs ranges from 1k to 1M nodes.

To identify the number of neighbors m (i.e., number of direct
measurements of each node) for Vivaldi, we created and evaluated
network coordinates of the tested topologies using the network
coordinate simulation tool NCSIM [14]. We consider the mean
absolute error (MAE) and 90th percentile absolute error (NPAE). For
Ripe Atlas and FIT IoT Lab, we measured the best trade-off between
accuracy and communication cost with m = 20. For PlanetLab and
King, we set m = 32 based on the results presented in [14, 19, 64].

End-to-end Deployment. To evaluate the end-to-end perfor-
mance of NEMO, we extended the IoTDMS NebulaStream with
NEMO as the underlying approach for operator placement. The ex-
periments are performed on a cluster comprising 11 RaspberryPIs,
where one node acts as the coordinator of NebulaStream and sink.
Seven nodes serve as sources and two as worker nodes that can be
used for intermediate aggregation. Based on the workload, we use
one additional PI interchangeably, either as a source or worker.

Workloads. The simulations are based on a generic DAF moni-
toring workload that collects metrics from all devices in the topol-
ogy and computes window aggregates. This workload represents a
common use case in many monitoring systems [4, 11, 24, 43, 53, 58].
Hereby, the load increases proportionally with the topology size
as all nodes act as data sources, allowing a thorough evaluation of
NEMO'’s performance across different scales. The selection of the
sink node is randomized to ensure a fair and unbiased represen-
tation. The simulation uses the semantics of distributed window
computation with four operators: sources, partial windows, final
window, and sink as explained in Section 2.1. We model various
loads by varying the window aggregation types, amount of collected
metrics, and ingestion rates through link weights and capacities as
explained in more detail below.

In the end-to-end deployments, we evaluate NEMO on five dif-
ferent queries that vary by their window types and ingestion rates.
The first query is a monitoring query used by NebulaStream to col-
lect network metrics from the nodes in its topology. The query uses
a tumbling window with a length of one second keyed by the node
ID. For this workload, we use 8 sources and 2 worker nodes, with
each source generating 10 events per second, resulting in a total of
80 events per second. The remaining four queries are based on the
DEBS 2013 grand challenge, where data is generated by sensors em-
bedded in the shoes of soccer players [44]. Specifically, we evaluate
NEMO on the following DEBS queries: 1) tumbling window with a
length of 1 second, 2) tumbling window with a length of 1 minute,
3) sliding window with a length of 1 second, emitted every 50ms,
4) sliding window with a length of 1 minute, emitted every 50ms.
In this workload, each source produces 200 events per second. As
these queries have a significantly higher ingestion rate than the
monitoring query, we use 7 sources and 3 worker nodes. To test the
approaches under different load conditions, we run experiments
using two setups. In the first, we run the workloads normally on
the topology. In the second, we use the Linux stress tool to occupy

all CPU cores and 80% of the available memory of the sources. We
run each experiment for 5 minutes.

Capacities and weights. Systems like Flink, Spark, Storm, or
NebulaStream rely on a configuration file that specifies the com-
putational capacities of workers. To show that NEMO supports
a wide range of capacities, in our simulations we evaluate it on
different capacity distributions, representing different levels of het-
erogeneity. To ensure consistent results across all experiments, we
change the individual node capacities while maintaining a nearly
constant total sum of capacities. Slight deviations may occur due
to rounding. The capacities follow a log-normal distribution with
o = 1.4, p = 7.3. We vary the range of capacities assigned to nodes
from [50, 50] to [0, 350]. In all distributions, the mean is fixed at 50,
while only the median changes.

To assess the performance of NEMO+ under varying loads, we
assign different link weights (w) to sources. Initially, we conduct
tests with uniform link weights (w = 1) for all sources, establish-
ing a baseline for comparison with NEMO and other aggregation
approaches. Furthermore, we evaluate NEMO+ with all sources
having w = 2 and in a configuration where each source is assigned
a random weight following a log-normal distribution within the
range [1,50]. In the weight simulations, the median is not fixed,
allowing for a total increase in load.

In the end-to-end deployments, we determine capacities em-
pirically. Following the execution and analysis of workloads, we
observe that each worker node can effectively handle four and
three sources for the monitoring and DEBS workload, respectively.
Consequently, we assign the total capacity (C;) of worker nodes to
4 for monitoring and 3 for DEBS. We set the capacities of sources
and sinks to 1, ensuring that no more operators other than the
pinned operators are placed on these nodes. Additionally, we set
link weights between operators to 1, as no further load balancing
between intermediate aggregations is required.

Baselines. We compare NEMO against the following baselines:
1) Optimal: We implement an optimal solution based on Cardellini
et al. [8]. 2) Bottom-Up: A heuristics approach used by Nebula-
Stream, where all DAFs are pushed down to the data sources, aim-
ing to optimize the processing at the source nodes [12]. 3) Top-
Down: A heuristics approach used by NebulaStream, where all
DAFs are placed at the sink node, aiming to optimize the aggre-
gation process at the sink [12]. 4) LEACH [29]: A cluster-based
approach commonly used in WSNs, which pre-aggregates data
from nearby sources at randomly selected cluster heads. In our
experiments, we use a central implementation of LEACH that uses
k-d trees for the neighborhood search. We define the number of
cluster heads to be equal to 10% of nodes in the topology, as sug-
gested by [29]. 5) LEACH-SF [55]: A variant of LEACH that uses
fuzzy c-means [6] for clustering. It employs an additive weighting
scheme for cluster head selection, considering sink distance and
centroid distance. Our extension augments LEACH-SF’s weighting
scheme with node capacities. 6) MST: A greedy approach based
on the Prim algorithm [47], which is a common representative for
tree-based aggregation in WSNs. MST constructs a minimum span-
ning tree from the sources to the sink, enabling data aggregation at
intermediate levels. 7) Chain: A chain-based method used in WSN,
which creates a chain from all sources to the sink and aggregates
data at every node in between. Our implementation is based on a
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Figure 4: Impact of capacity distributions towards overloaded
cluster heads for the simulated (1000 nodes) topology.

central probabilistic approach that uses stochastic gradient descent
and simulated annealing. 8) NEMO+: The extension of NEMO that
supports arbitrary weights where we tune the merge factor and step
size for each topology and weight distribution.

5.2 Mitigation of Over-Utilization

In this section, we evaluate NEMO’s effectiveness in preventing
over-utilized nodes. Figure 4 compares the four WSN approaches
to NEMO regarding their percentages of overloaded nodes for dif-
ferent capacity distributions. We exclude the optimal approach as
it did not produce results within a reasonable time. The topology’s
heterogeneity and the number of resource-constrained nodes in-
crease with decreasing median capacity, as explained in Section 5.1.
The percentage of overloaded nodes is calculated as the ratio of
overloaded cluster heads to the total number of cluster heads.

As shown in Figure 4, NEMO consistently outperforms the other
approaches across all capacity distributions due to its distinct ad-
vantage of having zero overloaded nodes. In comparison, the WSN
approaches LEACH-SF, MST and Chain exhibit no overloaded nodes
for a homogeneous topology with a median capacity of 50. However,
as the level of heterogeneity increases, the percentage increases to
around 5% for a median capacity of 25. LEACH-SF achieves with
3.5% the lowest value amongst WSNSs, as it penalizes in its cluster
head selection scheme nodes with low capacities. LEACH follows
a similar pattern, achieving zero overloaded nodes for a median
capacity of 50 and reaching 15% for a median capacity of 25, which
is three times higher than MST and Chain. For large topologies (i.e.,
with a smaller capacity than the number of sources), bottom-up
and top-down approaches that transmit data directly without inter-
mediate aggregation are not feasible as they always overload the
sink. They are thus excluded from this plot.

The linear increase of overloaded nodes with increasing hetero-
geneity can be explained as follows. When the heterogeneity is
low (i.e., high median capacity), all nodes have sufficient resources
to perform data aggregation. However, as the number of resource-
constrained devices increases, the likelihood of data aggregation
occurring on nodes with insufficient capacities also increases. The
rate of this increase in the baseline approaches depends on the
number of cluster heads. A higher number of cluster heads leads
to more intermediate aggregation and, consequently, better load
balancing, resulting in a less steep increase in overloaded nodes.
Among the baseline approaches, Chain exhibits the smallest incline
as it has the highest number of cluster heads (N —2). In comparison,
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Figure 5: Comparison of the 90th percentile latency deltas
against bottom up/top down across different approaches.

MST has (N — 1)/2 cluster heads, while LEACH has the lowest
number of cluster heads (0.1N).

In summary, this experiment highlights NEMO’s effectiveness
in preventing over-provisioning of cluster heads in large topolo-
gies and various capacity distributions, outperforming other base-
lines. This advantage stems from NEMO’s resource awareness.
Although the optimal approach theoretically could have avoided
over-provisioning, it failed to scale to the tested topology size and
workload and could not produce any results.

5.3 Placement Quality

In this section, we study the general performance of different aggre-
gation approaches by evaluating the theoretical latencies of their
placements in the NCS. Latencies represent the delta with respect to
the lower bound, given by top-down/bottom-up. We note that the
lower bound and computed latencies are purely theoretical, exclud-
ing processing time and estimation errors. We evaluate the impact
of estimation errors in Section 5.4 and provide a comprehensive
assessment of real end-to-end processing latencies in Section 5.7.
Figure 5 presents the latency deltas of the simulations in a heat
map. The y-axis represents the tested topologies and the x-axis the
evaluated baselines. In addition to NEMO and NEMO+ for different
capacity distributions and weights, we include NEMO with ran-
domly assigned clusters (performing aggregation at the centroids).
For w = 1 and w = 2, we only display results for median=50, as no
significant difference was observed amongst these capacities.
Overall, the results in Figure 5 show that bottom up/top down
consistently achieve the lowest theoretical latency in the cost space,
as they do not perform any intermediate aggregation and transmit
all data directly to the sink. Regarding the aggregation approaches,
NEMO+ outperforms all baselines in a comparable setting with
w = 1 as it consistently achieves a latency close to the lower bound
for all types of resource distributions, while still maintaining zero
overloaded nodes. Especially for PlanetLab, with an absolute devi-
ation of 0.04ms, RIPE Atlas with a deviation 0.2ms, and FIT with
0.07ms, NEMO achieves a latency, which is very close to the theoret-
ical lower bound. For larger weight distributions, it can be observed
that the latency increases in NEMO+. This is caused by the fact
the overall load of the topology increases, so that NEMO+ needs to
perform more aggregations. The same applies also for the median.
To show the impact of the pre-processing, we have also added to
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Figure 6: Performance comparison of latencies between real
RTT measurements and NCS estimates for RIPE Atlas.

the evaluation a NEMO variant that assigns nodes randomly to
groups instead of using density-based grouping. For this random
grouping, the results show significantly higher latencies with up to
7x for FIT than for the density-based counterpart.

Closest to NEMO are LEACH and LEACH-FS, with latencies be-
tween 0.89ms (PlanetLab) and 26.12ms (FIT). LEACH-FS is achieving
in general lower latencies due to the usage of fuzzy c-means for
clustering. The difference of 10ms for King is explained by the fact,
that LEACH-FS takes also resources into account for prioritizing a
suitable cluster head. However, both LEACH implementations do
not take into account whether the cluster head has in total enough
resources to handle all of its assigned nodes. NEMO takes these
resources into consideration and ensures that the cluster heads
do not become overloaded. The worst performance is achieved
by MST with latencies of 734ms (King) and 147 (sim 1000), and by
Chain with more than 20X higher latencies than the compared base-
lines. These latencies result from the large number of intermediate
aggregations, which increase linearly with the size of the topology.

In summary, this experiment demonstrates NEMO as a promising
approach for operator placement in geo-distributed stream process-
ing environments. It consistently achieves latency close to the lower
bound and outperforms existing baselines that do not take node
resources into account. Additionally, we show the importance of
the pre-processing phase in NEMO, as the density-based technique
proves to be significantly more effective than random grouping of
nodes. These findings reveal the potential benefits of using NEMO
to optimize operator placement in geo-distributed systems, leading
to improved system performance and user experience. In contrast,
the aggregation approaches of MST and Chain induce significantly
higher latencies than the other approaches, and are thus unsuitable
for large-scale stream processing environments.

5.4 Impact of Estimation Errors

NCSs introduce an estimation error as they collect measurements
only from a subset of nodes and due to the violation of the triangle
inequality. Here, we analyze the impact of this error by comparing
the performance of the tested approaches with latency estimates
from the NCS against actual latency measurements. We conduct
this experiment on a subset of nodes in RIPE Atlas (n=418), where
real latency measurements between all nodes are available.

Figure 6 shows that real and estimated mean latencies are nearly
equal for direct transmission and grouping-based approaches like
LEACH and NEMO. This observation indicates that the estima-
tion error has minimal impact on most nodes in these approaches.
Looking at the 90th percentile, LEACH remains largely unaffected
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Figure 7: 90th percentile latencies of NEMO for RIPE Atlas
over a time span of 24 hours for a single placement.

by the error with a latency discrepancy of 4.4ms. However, direct
transmission and NEMO show noticeable latency discrepancies, de-
viating by approximately 11% with 37.2ms and 43.4ms, respectively.
The most significant deviations are observed in MST and Chain
(omitted from the plot due to the large scale of latencies) with a
discrepancy of around 40% and 20%, respectively.

In summary, this experiment shows that MST and Chain are un-
suitable for placement decisions on NCSs due to their susceptibility
to errors introduced by NCSs. This is mainly because they rely on
pairwise correct latencies among all nodes. In contrast, LEACH and
NEMO require pairwise correct latencies only among cluster heads
and between leaf nodes and cluster heads, which makes them more
robust against the error induced by TIV.

5.5 Robustness

RTTs in real-world networks are subject to constant variations due
to factors such as network congestion, dynamic routing changes,
and fluctuations in server loads. Given that many stream process-
ing workloads involve long-running queries, NEMO emphasizes
creating placement strategies resilient to these latency fluctuations,
aiming to minimize the need for frequent re-optimizations.

To test the robustness of NEMO, we compared latencies of differ-
ent NEMO placements on real RIPE Atlas RTT measurements over
a time span of 24 hours, excluding removals and additions of nodes.
Figure 7 shows the 90th percentile latencies of the monitoring query
(cf. Section 5.1) with different capacity and weight distributions. In
general, latencies exhibit a similar pattern as outlined in Section 5.3,
where higher weights correspond to increased latencies due to ad-
ditional intermediate aggregation levels. The observation over a
24-hour period reveals that latencies fluctuate over time but con-
sistently stay within a standard deviation of approximately 20ms
for all placements. This underscores the robustness of NEMO’s
placements, showcasing resilience to latency fluctuations.

5.6 Scalability

In this section, we evaluate the scalability of NEMO’s optimization
and re-optimization on topologies of different sizes. The x-axis of
Figure 8 shows an increasing number of nodes in the topology,
which also linearly increases the total number of operators in the
logical plan. The y-axis represents the time taken to compute a full
placement of the monitoring query (cf. Section 5.1). We compare
NEMO against MST, LEACH, LEACH-SF, Chain, and the optimal
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Figure 8: Full-optimization and re-optimization times for
the monitoring workload (cf. Section 5.1) that increases its
complexity with topology size.

solution. To evaluate the re-optimization of NEMO, we tested the
following scenarios: 1) removal of random leaf nodes, 2) removal of
random cluster heads, 3) addition of nodes, 4) computation of coor-
dinates for a node. All re-optimizations produced similar results,
each completing in under one second. Therefore, we summarized
them together by computing their average.

Our evaluation in Figure 8 demonstrates that NEMO’s heuristics
(Section 4.1) provide significant advantages in terms of computation
time for operator placement and replication, achieving linear-time
complexity. For topologies with fewer than 100k nodes, NEMO
optimizes the placement in less than a minute, and for topologies of
1 million nodes, placement takes around 10 minutes. In contrast, the
optimal approach, which is the only other method avoiding node
overloading, requires more than 15 minutes for topologies with less
than 100 nodes. In all other experiments, we terminated the runs of
the optimal approach manually after 20 minutes. The same applies
also to the MST, Chain, and LEACH-SF approaches. The biggest
topology processed with MST and LEACH-SF had 10k nodes and
took around 6 minutes, while Chain took around 5 minutes for a
topology with 1k nodes.

Alongside NEMO, LEACH is the only other approach that achieves
linear runtime with respect to the topology size, due to our effi-
cient LEACH implementation using a k-d tree for nearest neighbor
search. For topologies up to 100k nodes, LEACH completes opti-
mization in less than 1 minute, which increases to approximately
5 minutes for topologies of 1 million nodes. NEMO takes roughly
double the time of LEACH for a full optimization run due to its
extra calculations, including optimal operator placement in the
NCS and load redistribution to avoid node overloading. Despite
this initial computation time, NEMO’s advantage lies in its ability
to efficiently adapt to dynamic changes. Identifying new cluster
heads takes around one second regardless of the topology size. In
contrast, LEACH needs to recompute the neighborhood search of
all nodes for new cluster heads after the failure of a cluster head.

In summary, our evaluation shows that NEMO solves OPR for
an initial deployment in linear time and can adapt to changes in
constant time, significantly outperforming the state-of-the-art.

5.7 End-to-end Performance

NEMO’s effectiveness as a placement approach extends to cloud-like
topologies with workloads that risk overloading processing nodes.
Hereby the superiority of NEMO over related work is evident even
in a relatively small topology consisting of 11 resource-constrained
nodes. We deploy NebulaStream on a local Raspberry PI cluster as
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Figure 9: Aggregated latency distributions for all DEBS 2013
workloads grouped by approach.

described in Section 5.1, utilizing NEMO as the underlying approach
for operator placement. We evaluate the end-to-end latency (includ-
ing both network and processing latency) and the communication
cost. We measure communication cost by counting the number of
generated buffers that are transmitted through the network. We
compare NEMO to the operator placement heuristics in Nebula-
Stream (bottom-up and top-down), MST, and Chain. We note that
on this small topology, LEACH and LEACH-SF produce the same
placement as top-down. The optimal ILP approach of Cardellini
et al. [8] produces the same placement as bottom-up.

Latency. For the monitoring workload in NebulaStream and all
DEBS workloads, we observed a consistent pattern. Therefore, Fig-
ure 9 shows only the aggregated end-to-end latencies for all DEBS
workloads, grouped by approach and experimental setup (with or
without stress). In the non-stressed experiment, bottom-up achieves
the lowest latencies equal to the optimal approach. Hereby, bottom-
up reaches on the aggregated latencies a 90th percentile (NPL) of
129 ms by placing all computations to non-overloaded sources. The
NPLs of Chain, MST, and NEMO in the non-stressed experiment are
all comparable around 144ms. The similarity in latencies is attrib-
uted to the low network latencies of the local topology, which are
< 1 ms per node pair. Irrespective of the stress condition, top-down
consistently exhibits the highest NPL, exceeding 72.5k ms, due to
overloading the sink node.

The effectiveness of NEMO’s resource-aware placement becomes
evident in the second experiment, where the sources are over-
utilized. Here, bottom-up experiences a significant increase in la-
tencies with an NPL of 349 ms. In contrast, NEMO remains robust,
achieving a similar performance to the non-stressed setup (NPL of
144 ms), significantly outperforming the bottom-up approach. MST
achieves an NPL of 416 ms, and Chain an NPL of 988 ms. Despite
both MST and Chain performing intermediate aggregations, they
do so on overloaded source nodes, resulting in increased overall
processing latencies. Chain, in particular, performs more interme-
diate aggregations on overloaded nodes than MST, which explains
its higher latency.

Compared to the simulated results (cf. Section 5.3), the most
significant difference is observed for top-down, MST, and Chain.
This difference is due to simulations only considering network la-
tency, while end-to-end experiments account for both network and
processing latency. Given the low network latencies, the high pro-
cessing latency in the overloaded sink of the top-down approach
dominates the overall latency. As a result, MST and Chain outper-
form top-down in the end-to-end experiments.



Communication. For the transmitted buffers, we present val-
ues for the 1s tumbling window workload on the DEBS workload.
Similar results are observed in other workloads. Chain achieves
the lowest value with around 300 buffers. This is due to its deep
aggregation tree, where data is aggregated at each node, a strat-
egy aligned with its optimization goal of reducing communication
rather than latency. MST aggregates data at six intermediate levels
and has roughly double the buffers of Chain, totaling around 600.
NEMO performs three intermediate aggregations and transmits
approximately 900 buffers, three times higher than Chain. In the
bottom-up aproach, each source transmits only its partial window
aggregate to the sink, resulting in 1800 buffers. The top-down ap-
proach has the highest number of transmitted buffers, around 14k,
as no data is pre-aggregated before transmission.

5.8 Summary

Our evaluation indicates that the most effective way to minimize
latencies in distributed stream processing is by placing all DAFs
at the sources, as done in the bottom-up approach. However, this
requires sources with sufficient processing resources and results in
a significant increase in processing latencies if operators are placed
on overloaded nodes. Our experiments demonstrate that NEMO
effectively addresses this issue by avoiding operator placement
on overloaded nodes, resulting in significantly lower processing
latencies compared to all baselines when source nodes bear addi-
tional load. Furthermore, NEMO scales to extremely large topolo-
gies with over 1 million nodes. LEACH is the only other approach
that achieves such scalability. However, it fails to prevent node
overloading, significantly impacting processing latencies in real
end-to-end deployments by more than 500 times. For communica-
tion reduction, Chain yields the best results due to its numerous
intermediate aggregations. However, it cannot scale to large topolo-
gies and incurs higher latencies than bottom-up and NEMO.

6 RELATED WORK

OP has been studied extensively in the literature under different
modeling assumptions and optimization goals, such as minimiz-
ing application end-to-end latency or inter-node traffic migration,
mainly focusing on homogeneous cloud computing clusters [22, 60].
To address the heterogeneity of devices, Cardellini et al. [7] propose
a general formulation of optimal operator placement that considers
computing and networking resources. A joint placement and repli-
cation approach is proposed by Cardellini et al. [8] to determine the
optimal number of replicas for each operator during initial place-
ment on a given infrastructure. Unlike NEMO, both approaches
are impractical for osmotic computing applications due to their
excessively long run times on large topologies and their inability
to address changes through efficient re-optimizations.

Pietzuch et al. [49] propose an approach called SBON to solve the
SOP efficiently using a cost space. Rizou et al. [51] extend the SBON
approach to solve MOP using a cost space. They prove that MOP
can be reduced to multiple SOPs, which are efficiently calculated
using gradient descent. Their approach is resource-agnostic, as it
does not have the notion of resources/capacities in its model, and
does not address re-optimizations. In contrast, our approach solves
OPR efficiently, which is a generalization of MOP. Additionally,

it supports efficient re-optimizations and is resource-aware. An
approach to handle the placement of newly added operators to
an existing deployment has been examined by Heinze et al. [28].
They propose a model to predict latency spikes created by operator
movements and use it to develop an operator placement algorithm
based on a bin-packing heuristic. However, in contrast to NEMO,
this algorithm minimizes latency violations and focuses solely on
placing newly added operators.

The computation of DAFs on resource-constrained devices is
mainly addressed by WSNs using three types of aggregation ap-
proaches. 1) Cluster-based approaches transmit data to a clus-
ter head, which aggregates data from all nodes in its cluster and
sends a concise digest to the sink. The most common approach
is LEACH [29], which uses a randomized protocol with rotating
cluster heads to prolong network lifetime. HEED [66] focuses on
energy-efficient clustering using a probabilistic approach to elect
cluster heads. CLUDDA [10] is a distributed protocol that relies
on local decisions made by cluster heads to form clusters and op-
timize communication. 2) Tree-based approaches achieve further
improvements in energy efficiency by transmitting only to close
neighbors. Common approaches like EADAT [21] or PEDAP [59]
use the greedy MST algorithm of Prim to create an aggregation tree.
3) Chain-based approaches like PEGASIS [35] achieve the highest
reduction in energy utilization by organizing nodes into a linear
chain for data aggregation. This is either achieved using a greedy
algorithm, or the sink can determine the chain in a centralized
manner. Different from NEMO, WSN approaches focus on mini-
mizing energy utilization and do not consider latency and load.
Additionally, WSN approaches represent network communication
protocols for in-network data aggregation, while NEMO addresses
operator placement and replication of DAFs for a holistic SPE.

7 CONCLUSION

This paper introduces NEMO, a heuristic approach for determining
the replication factor and placement of DAFs in osmostic com-
puting environments. NEMO prioritizes minimizing latency and
preventing node overloading as its main optimization objectives.
Furthermore, NEMO can handle topological changes by efficiently
recomputing existing placement solutions. NEMO projects a given
topology to a Euclidean space in a NCS. This facilitates calculat-
ing the optimal location of operators, determining the degree and
placement of replicas, and distributing replicas among underuti-
lized nodes near their non-replicated counterparts. Our experiments
demonstrate that NEMO outperforms comparable state-of-the-art
approaches in terms of scalability by minimizing end-to-end latency
and avoiding node overloading. Specifically, our results demonstrate
that NEMO scales DAF operator computation to topologies with
millions of nodes and significantly reduces network communication.
This establishes NEMO as a foundation for placing DAFs in osmotic
computing environments to efficiently process continuous data
streams on large, heterogeneous, and geo-distributed topologies.
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