
GPU-Accelerated Stochastic Gradient Descent for Scalable
Operator Placement in Geo-Distributed Streaming Systems

Tristan Joel Terhaag
TU Berlin

t.terhaag@campus.tu-berlin.de

Xenofon Chatziliadis
BIFOLD, TU Berlin

x.chatziliadis@tu-berlin.de

Eleni Tzirita Zacharatou
Hasso Plattner Institute
University of Potsdam

eleni.tziritazacharatou@hpi.de

Volker Markl
BIFOLD, TU Berlin, DFKI
volker.markl@tu-berlin.de

ABSTRACT
Modern geo-distributed stream processing systems, particularly
those supporting Internet of Things (IoT) workloads, rely on effi-
cient operator placement strategies to minimize end-to-end latency
and avoid overloading resource-constrained edge nodes. Existing
approaches, such as NEMO, address this challenge by modeling
latency with Euclidean embeddings of network topologies and solv-
ing operator placement using spring relaxation. However, their
CPU-bound optimization process limits scalability, particularly in
large topologies with millions of nodes.

This paper introduces NEMO-SGD, the first GPU-accelerated,
gradient-based optimizer for operator placement in distributed
stream processing. NEMO-SGD reformulates the operator place-
ment problem as a differentiable loss function and replaces NEMO’s
spring relaxation algorithm with a parallelized Stochastic Gradient
Descent (SGD) process. Experiments performed on both synthetic
and real-world topologies show that NEMO-SGD can optimize
placements in under one second for topologies with up to 1 million
nodes. This represents a reduction in the optimization time of up
to 70% compared to the state-of-the-art NEMO approach. At the
same time, NEMO-SGD maintains or even improves the placement
quality. Our work shows that gradient-based, GPU-accelerated par-
allel optimization serves as a practical and scalable foundation for
operator placement in next-generation stream processing systems.

VLDBWorkshop Reference Format:
Tristan Joel Terhaag, Xenofon Chatziliadis, Eleni Tzirita Zacharatou,
and Volker Markl. GPU-Accelerated Stochastic Gradient Descent for
Scalable Operator Placement in Geo-Distributed Streaming Systems. VLDB
2025 Workshop: 16th International Workshop on Accelerating Analytics
and Data Management Systems Using Modern Processor and Storage
Architectures (ADMS25).

1 INTRODUCTION
The widespread implementation of large-scale Internet of Things
(IoT) applications places increasing demands on distributed stream

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

processing systems [23, 44, 45]. These systems need to ingest and
process continuous data streams from millions of devices spread
across vast geographical locations. A core challenge in this context
is operator placement, which involves determiningwhere to execute
computational tasks within the network to minimize end-to-end
latency and prevent overloading nodes with limited resources.

To prevent processing nodes from being overloaded by the high
data volumes typical of IoT applications, a common strategy is
to parallelize decomposable aggregation functions (DAFs), such
as min, max, count, and sum. These functions are widely used in
stream processing [39, 43] and can be efficiently replicated and
partially aggregated near the data source due to their inherent
decomposability [25, 26, 34].

Motivating Example. Imagine a smart city air quality monitor-
ing system deployed across thousands of intersections, roads, and
public spaces. Each sensor node continuously transmits detailed
pollution data to a stream processing system, which is responsible
for detecting any breaches of predefined thresholds and sending
alerts in real time. The calculations are performed using decompos-
able aggregation functions (DAFs), such as calculating the average
concentration of nitrogen dioxide (𝑁𝑂2).

In a typical deployment, raw data from each sensor is sent to a
central cloud server for aggregation. However, this approach can
result in high communication latency, strained network bandwidth,
and delayed response times, which are unacceptable in real-time,
latency-sensitive applications. To improve efficiency, operators
should be placed close to the data sources, such as on edge de-
vices or fog nodes. However, this presents a complex optimization
challenge, as nearby devices vary in computational capacity, net-
work latency, and workload. Overloading a single node can cause
performance issues, while poor placement may increase latency
and decrease responsiveness.

Challenges. Operator placement (OP) in geo-distributed stream
processing systems is an NP-hard optimization problem [33]. Plac-
ing DAFs closer to data sources can significantly reduce latency and
communication overhead, but also introduces new challenges. IoT
environments involve devices that vary significantly in their com-
putational capacity, exhibit non-uniform network latency, and expe-
rience frequent topological changes due to factors such as mobility,
hardware failures, or fluctuating data rates [31, 35]. Traditional
placement strategies for cloud-based systems are not well-suited to
these conditions, as they struggle to scale to millions of nodes or

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

quickly adapt to rapidly changing environments. Therefore, effec-
tive OP solutions must: (i) scale to large, heterogeneous topologies;
(ii) prevent the overloading of resource-constrained nodes; and (iii)
adapt quickly to topological changes.

State-of-the-Art. NEMO [9] is currently the state-of-the-art
approach for latency-aware operator placement and replication
of DAFs in resource-constrained, geo-distributed environments. It
leverages Euclidean embeddings of network topologies and applies
a spring relaxation algorithm to create hierarchical aggregation
trees. Although NEMO achieves high-quality placements, its op-
timization phase is CPU-bound, which can result in performance
bottlenecks as the topology size increases.

Our Solution. We present NEMO-SGD, a scalable, GPU-accel-
erated approach for operator placement in geo-distributed stream
processing systems. Building on the NEMO approach, NEMO-SGD
replaces the CPU-intensive spring relaxation phase with a GPU-par-
allelized Stochastic Gradient Descent (SGD) optimizer. The place-
ment objective is reformulated as a differentiable loss function that
jointly minimizes latency and penalizes capacity violations. Fur-
thermore, NEMO-SGD executes the entire placement pipeline on
the GPU, leveraging parallelism to significantly improve scalability
and runtime efficiency, particularly in large-scale topologies.

Results. We compare NEMO-SGD against NEMO as well as
heuristics used in SPEs and adaptive aggregation approaches used
in Wireless Sensor Networks (WSN). We conduct experiments on
both synthetic and real-world datasets, including topologies with
up to one million nodes. Our evaluation demonstrates that NEMO-
SGD significantly outperforms the baseline methods, including
NEMO. It achieves placement runtimes of under one second, mak-
ing it 70% faster than NEMO. Additionally, NEMO-SGD improves
placement quality by reducing the 90th percentile latency by up
to 75× compared to NEMO. Importantly, it also avoids all capacity
violations across test scenarios, thanks to the integration of soft
constraint penalties during the training process.

The remainder of this paper is structured as follows. Section 2
describes the system and resource model of our approach, along
with a formal definition of the problem. Our approach is described
in Section 3, and its evaluation is presented in Section 4. We then ex-
plore related work in Section 5, followed by our concluding remarks
in Section 6.

2 PRELIMINARIES
This section introduces the fundamental concepts and definitions of
our approach, which we inherit from NEMO [9]. We first define the
semantics of a stream processing application in Section 2.1. Next, we
describe how we model latency and resource metrics for placement
decisions in Section 2.2. Finally, in Section 2.3, we formulate the
operator placement and replication problem that we address and
parallelize using the GPU.

2.1 Stream Processing Model
SPEs take a user query as input and create a logical operator plan that
represents the processing pipeline and specifies the order and type
of operators and their dependencies. Operators are self-contained
units performing specific functions, while streams are unbounded

Figure 1: Example of distributed windowing, where partial
count-aggregates are computed on remote worker nodes.

sequences of data tuples. This work focuses on Decomposable Ag-
gregation Functions such as sum, average, or count. These operators
support partial aggregation, enabling computations to be incremen-
tally performed at intermediate nodes before reaching the final
aggregation. Properly placing DAFs near their data sources can
significantly reduce bandwidth usage and end-to-end latency.

Figure 1 depicts the operators required for hierarchical aggrega-
tion using window merging in a topology with two source nodes
and one worker node that also acts as the sink. In 1 , source oper-
ators emit individual events from their input streams. In 2 , these
events are grouped into window slices, which are time-partitioned
segments of the stream. In 3 , nodes compute local intermediate
aggregates over their window slices through the partial aggrega-
tion operator. Finally, in 4 , the worker node receives these partial
aggregates andmerges them to produce the final results. This hierar-
chical processing model, known as distributed windowing, enables
parallel, slice-level computation and improves scalability [4]. How-
ever, it applies only to decomposable window functions; holistic
functions do not support partial aggregation and thus limit the
applicability of this approach [43].

Logical Plan. We model a query as a directed acyclic graph
(DAG)𝐺 = Ω, 𝑆, 𝐴, 𝐿, following Rizou et al. [33], where Ω is the set
of operators and 𝐿 the set of links 𝜔𝑖𝜔 𝑗 indicating that operator
𝜔𝑖 produces a stream consumed by 𝜔 𝑗 . Each operator 𝜔𝑖 has a set
of incoming and outgoing links 𝐿𝜔𝑖

. Link weights𝑤 (𝜔𝑖𝜔 𝑗) reflect
the load imposed on the destination node, and the load 𝐶𝑢 (𝜈𝑖) of a
node is computed as the sum of the weights of its incoming links.

Operators in 𝑆 ⊂ Ω (sources) have only outgoing links and
produce data, while those in 𝐴 ⊂ Ω (sinks) have only incoming
links and consume data. Sources and sinks are pinned, i.e., they
have fixed placements, while other operators can be freely assigned
to any node in the topology.

Replication. To support parallelism and scalability, we extend
the logical plan with operator replication. Each operator 𝜔 ∈ Ω
is represented as a tuple {𝜔id, 𝑅id, 𝜈𝑖 , 𝜌}, where 𝜔id is the operator
ID, 𝑅id the replica ID, 𝜈𝑖 the physical node to which the replica
is assigned, and 𝜌 the number of replicas. Pinned operators (i.e.,
sources and sinks) have fixed placements and are not replicated.
The resulting replication plan 𝐺∗ = {Ω∗, 𝐿∗} augments the original
DAG with all operator replicas and their links. The total number of
operators |Ω∗ | equals the sum of all replicas.

2

To avoid duplicate processing and ensure valid partitioning, we
adopt a constraint inspired by WSNs [41]: replicas must receive
disjoint input streams, i.e., ∀𝜔 (𝜔 ∈ 𝐿𝑗 → 𝜔 ∉ 𝐿𝑘) for any two
replicas of the same operator. This significantly reduces the number
of valid edges in 𝐿∗. We denote the superset of all valid replication
plans (i.e., with all possible 𝜌 and valid paths) as 𝐺 ′.

2.2 Resource Model
As required by NEMO, we model the topology as a set of connected
nodes 𝑉 in a cost space 𝐺𝑇 ∈ R𝑛×𝑑 . Each row of 𝐺𝑇 represents
the coordinates of a node in the cost space, with the 𝑖th row cor-
responding to the coordinates of the 𝑖th node 𝜈𝑖 ∈ 𝑉 . We denote
the coordinates of node 𝜈𝑖 as 𝜈𝑖 and represent the set of all node
coordinates as 𝑉 = {𝜈1, . . . , 𝜈𝑛}. The cost space 𝐺𝑇 represents
optimization metrics, in our case, latency, in a Euclidean space.
Specifically, in our cost space, each node is assigned coordinates in
two dimensions, ensuring that the Euclidean distance between any
two nodes closely approximates the actual latency between them.
Various methods exist for computing such a latency cost space. In
this work, we use the Vivaldi algorithm [14] to create the latency
cost space. Cost spaces are generally agnostic regarding the types of
metrics they represent and can also be used to depict other metrics,
as further discussed by Chatziliadis et al. [9].

We model the maximum computational capacity of a node 𝜈𝑖
as 𝐶𝑡 (𝜈𝑖) ∈ N. Nodes with high capacities are typically servers
within the cloud, while those with lower capacities are edge or
sensor devices. We consider 𝜈𝑖 to be overloaded if 𝐶𝑢 (𝜈𝑖) > 𝐶𝑡 (𝜈𝑖),
where 𝐶𝑢 represents the utilized capacity. Finally, 𝐶𝑟 represents
the required capacity, and 𝐶𝑎 = 𝐶𝑡 −𝐶𝑢 the available capacity. The
available and utilized capacity of a node depends on the input data
rate of the operators placed on it.

2.3 Problem Definition
In a distributed stream processing system, the goal of operator
placement is to assign each operator 𝜔 ∈ Ω to one or more nodes
𝜈 ∈ 𝑉 such that system constraints are met and a given objective,
such as minimizing end-to-end latency, is optimized. The opera-
tor placement and replication (OPR) problem extends the classical
placement problem by also determining the optimal number of repli-
cas per operator, enabling parallel processing over partitioned data
streams. Each replica is assigned to a node such that no two replicas
of the same operator receive the same input, preventing redundant
computation [41]. The binary decision variable 𝑓𝑚 (𝜔, 𝜈) → 1 indi-
cates placement of operator 𝜔 on node 𝜈 . As shown by Cardellini
et al. [8], OPR generalizes the NP-hard assignment problem [22]
and remains computationally NP-hard.

Formally, our objective is to minimize total latency Lat(Ω∗)
across all source-to-sink paths, subject to node capacity constraints
and valid replication semantics, which is formally defined as:

min Lat(Ω∗) =
∑︁

∀𝜔𝑥 ,𝜔𝑦 ∈Ω∗
𝑑 (−−−−→𝜔𝑥𝜔𝑦),∀Ω∗ ∈ 𝐺∗,∀𝐺∗ ∈ 𝐺 ′

(1)

subject to the constraint

𝐶𝑢 (𝜈𝑖) ≤ 𝐶𝑡 (𝜈𝑖),∀𝜈𝑖 ∈ 𝑉 . (2)

3 NEMO SGD
Our approach builds on NEMO [9], a previously proposed opti-
mization approach for latency-aware operator placement in geo-
distributed stream processing systems. NEMO performs the place-
ment process in three phases: 1) latency-based clustering of nodes,
2) virtual placement of operators in a continuous coordinate space
using spring relaxation, and 3) determination of the number of op-
erator replicas and their mapping to physical nodes with capacity
checks. Figure 2 depicts these three phases for an artificial cost
space comprising 1000 nodes, where all nodes are sources in the
topology that transmit a data aggregate to the sink. For additional
details on the three phases of NEMO, we refer the reader to the
original paper [9].

Although NEMO is scalable and can be re-optimized, it has two
main limitations. First, its placement loop operates solely on the
CPU. Second, it manages capacity constraints only during a post-
processing step in phase 3. This can lead to an increased degree
of replication for intermediate aggregation operators, resulting in
higher latency. We address both issues with NEMO-SGD, a GPU-
parallel extension that retains NEMO’s overall structure but re-
places its core placement algorithm with a differentiable, capacity-
aware objective solved via stochastic gradient descent (SGD). In
addition to SGD calculation, NEMO-SGD performs all computa-
tions on the GPU, enabling fast optimization even on large-scale
topologies.

3.1 Unified Latency–Capacity Objective
The initial phase of NEMO serves as a preprocessing step in which
nodes within the cost space are grouped into clusters based on min-
imal latency, as shown in Figure 2(a). Each cluster contains nodes
that are situated close to one another in the cost space, resulting in
low latency between them. This clustering effectively reduces the
search space for the subsequent phases.

In the second phase, NEMO calculates the optimal placement
of an operator in the cost space between a given set of upstream
nodes and the sink. In this phase, we replace NEMO’s spring relax-
ation method with a differentiable objective that simultaneously
minimizes communication latency and avoids overloading physical
nodes. Each aggregation operator is modeled as a freely assignable
virtual node 𝑣 ∈ R𝑑 . Initially, the number of aggregation operators
to be assigned corresponds to the number of clusters, i.e., we place
an aggregation operator for each cluster. Additional intermediate
aggregation layers are introduced iteratively until all optimization
constraints are satisfied. Given a set of upstream nodes𝑈 (initially
the sources of the cluster) and a downstream node 𝑠 (i.e., the sink),
the objective function for determining the position of the virtual
node 𝑣 is defined as:

min
∑︁
𝑢∈𝑈

𝛼 ∥𝑣 − 𝑢∥22 + 𝛽 ∥𝑣 − 𝑠 ∥22 + 𝛾
max(0, 𝜆(𝑣) −𝐶 (𝑣))

𝐶 (𝑣) , (3)

The first two terms model latency and penalize distance between
upstream and downstream nodes, ensuring that the virtual node is
placed close to where the data originates and where it is eventually
consumed. The third term introduces a soft penalty for exceeding
capacity: 𝜆(𝑣) estimates the total load routed through 𝑣 , and 𝐶 (𝑣)

3

(a) Grouping (b) Virtual Placement (c) Re-assignment

Figure 2: Overview of NEMO SGD’s three phases: (1) grouping physical nodes by latency, (2) optimally placing operators on
virtual nodes to form an aggregation tree, and (3) mapping operators to physical nodes with replication to prevent overload.

is the combined available capacity of the k-nearest physical nodes.
When there is sufficient capacity, the penalty is zero; otherwise, it
grows proportionally with the overload. The weighting parameters
𝛼 , 𝛽 , and 𝛾 balance the trade-off between minimizing latency and
avoiding congestion.

We minimize Equation 3 using mini-batch stochastic gradient
descent. At each iteration 𝑡 , a batch 𝐵𝑡 ⊆ 𝑈 of upstream nodes is
sampled, and the virtual position is updated as follows:

𝑣𝑡+1 = 𝑣𝑡 − 𝜂

2𝛼
∑︁
𝑢∈𝐵𝑡

(𝑣𝑡 − 𝑢) + 2𝛽 (𝑣𝑡 − 𝑠) + 𝛾∇𝑣

(
penalty

) ,

where 𝜂 is the learning rate, and the penalty gradient becomes
active only when the estimated load exceeds capacity. This allows
to efficiently determine coordinates in the cost space that are both
latency-efficient and resource-feasible for each virtual node. The
convexity of the optimization objective in this phase enables the
placement of topologies with millions of operators to be optimized
independently and in parallel.

The final phase of NEMO involves mapping virtual nodes to
physical nodes for deployment. This mapping is crucial, as virtual
nodes are abstract operator representations that exist solely within
the optimization cost space. The objective is to assign each virtual
node to the nearest physical node within its cluster that has enough
residual capacity to accommodate the expected load. NEMO-SGD
retains this phase unchanged to preserve constraint satisfaction.
As in NEMO, it computes the Euclidean distances between each
virtual node and all physical nodes in the same cluster. It then sorts
the nodes by proximity and assigns the virtual node to the closest
physical node with sufficient available capacity.

NEMO-SGD iteratively repeats the above process until all opti-
mization constraints are fulfilled. In each iteration, an intermediate
aggregation layer is introduced to perform a new aggregation be-
tween the nodes identified in the previous iteration and the sink.

3.2 GPU Implementation
NEMO-SGD executes the complete operator placement pipeline on
the GPU. To support efficient parallel computation, node coordi-
nates are stored in a columnar tensor layout, which allows GPU
threads to access data in a coalesced manner and improves memory
throughput. Cluster memberships are stored in a shared index for
parallel thread access during mini-batch updates. The available
capacity of each node is tracked using a compact array that resides
on the GPU. To speed up proximity queries, which are crucial for
making placement decisions, we utilize a grid-based spatial index-
ing scheme. This indexing is precomputed in the GPU’s shared
memory at the beginning of each optimization pass.

The entire optimization process, including gradient calculation,
capacity evaluation, penalty handling, and coordinate updates, is
fused into a single GPU kernel. Instead of launching many small
operations separately, we record the full sequence of computations
once using GPU graph capture and replay this sequence for each
epoch. This drastically reduces kernel launch overhead and im-
proves overall runtime. Initial node clustering is performed on the
GPU using an efficient mini-batch K-Means clustering algorithm
that runs asynchronously in a separate execution stream. To avoid
idle time, we employ a double-buffering strategy: while one epoch
is being optimized, the next epoch’s clustering runs in parallel,
effectively hiding the clustering cost behind ongoing computation.

To synchronize results across threads and thread blocks, we
aggregate key metrics such as total loss, gradient norm, and ca-
pacity constraints using a single collective operation per epoch,
reducing the overhead typically caused by frequent fine-grained
synchronizations. Load balancing is handled dynamically: clusters
are assigned to thread blocks via a shared work queue, allowing
idle threads to steal remaining tasks and redistribute the workload
as needed. This ensures high GPU utilization even when cluster
sizes or computational demands vary. All numerical operations are
performed using single-precision (FP32) arithmetic.

4 EVALUATION
We evaluate our parallelized, gradient-based approach, NEMO-SGD,
using the simulation testbed introduced by Chatziliadis et al. [9],

4

which was also used to evaluate the original NEMO approach. Our
evaluation focuses on placement quality and runtime performance,
and it is conducted on both real and synthetic datasets that exhibit
diverse latency and workload characteristics.

4.1 Experimental Setup
In this section, we detail the experimental setup used to evaluate
NEMO-SGD, which includes the hardware environment, datasets,
workload and capacity models, and baselines. Our objective is to
ensure a fair and reproducible evaluation across various scenarios.

Hardware. All experiments were conducted on a workstation
equipped with an AMD Ryzen 7 5800X CPU, 32 GB of RAM, and
an NVIDIA RTX 3070Ti GPU with 8 GB of VRAM. The operating
system was Ubuntu 22.04 LTS, running under Windows Subsystem
for Linux 2 (WSL2).

Implementation. NEMO-SGD is implemented in Python using
PyTorch 2.0.1 with CUDA 11.8. For comparison, we also imple-
mented a CPU-parallel version of NEMO-SGD. The number of CPU
processes, as well as the number of GPU thread blocks, corresponds
to the number of clusters identified in the first phase of NEMO.
Parameters were individually tuned for each experiment to ensure
optimal performance. All of our experiments also include the time
required to load data into GPU memory.

Datasets. We use the Vivaldi algorithm [14] to construct net-
work coordinate systems based on latency measurements collected
from various real-world and synthetic topologies. To ensure a fair
comparison, we adopt the same hyperparameters as those used in
the original NEMO evaluation, including the number of neighbors
𝑚𝑚 (which represents the number of direct latency measurements
per node). Network coordinates for all tested topologies are gen-
erated and evaluated using the NCSIM simulation tool [11]. We
use latency measurements of the following topologies: 1) FIT IoT
Lab [1] is an IoT testbed deployed across different regions in France.
Our evaluation uses RTTs of 433 geographically distributed nodes
comprising different types of microcontrollers and four gateway
servers. 2) PlanetLab (PL) [13] measurements represent RTTs from
335 nodes hosted by universities and research institutions across
Europe and North America. 3) King [17] contains latency measure-
ments of 1740 Internet DNS servers. 4) We also generate artificial
NCSs with varying latency distributions and sizes. The x-axis of the
NCSs ranges in [0, 100] and the y-axis in [−50, 50]. These ranges
represent a combined set of latency distributions found in other
topologies. Nodes belong to different Gaussian distributions with
uniformly distributed centers across the plane. The artificial NCSs
range from 1k to 1M nodes.

Workload and Capacity Models. Consistent with the original
NEMO evaluation, our simulations are based on a generic DAF
monitoring workload that collects metrics from all devices in the
topology and computes window aggregates. This workload models
a common scenario in many monitoring systems [3, 5, 10, 16, 27,
34, 36]. The load scales proportionally with the size of the topology,
as all nodes serve as data sources, allowing for a comprehensive
evaluation of NEMO’s scalability and performance. The sink node
is randomly selected to avoid bias in the evaluation.

Figure 3: Comparison of the 90th percentile latency deltas
against bottom up/top down across different approaches.

Capacities and Weights. As in the original NEMO evaluation,
we model node capacities in line with real-world stream process-
ing systems such as Flink, Spark, Storm, and NebulaStream, which
typically specify worker capacities through configuration files. To
demonstrate NEMO’s robustness under diverse deployment con-
ditions, we evaluate it on a range of capacity distributions that
reflect different levels of heterogeneity. To ensure consistent com-
parisons across experiments, we vary individual node capacities
while keeping the total capacity approximately constant (minor
deviations may arise due to rounding). Capacities are drawn from
a log-normal distribution with parameters 𝜎 = 1.4 and 𝜇 = 7.3.
To evaluate NEMO+ and NEMO-SGD under varying workload in-
tensities, we assign different link weights (𝑤) to sources. Initially,
all sources are assigned uniform weights, providing a baseline for
comparison with NEMO and alternative aggregation strategies. We
then increase load heterogeneity by assigning weights to all sources,
drawn from a log-normal distribution within the range of 1 to 50.

Baselines. We compare NEMO-SGD against the following base-
lines: 1) Optimal: An optimal solution based on Cardellini et al. [8].
2) LEACH [20]: A cluster-based method commonly used in WSNs,
where data is pre-aggregated at randomly selected cluster heads. In
our implementation, we use a centralized LEACH version with k-d
trees for neighborhood search and set the number of cluster heads
to 10% of the nodes, following [20]. 3) MST: A greedy approach
based on Prim’s algorithm [30], often used for tree-based aggrega-
tion in WSNs. It constructs a minimum spanning tree from sources
to sink, enabling in-network aggregation at intermediate nodes. 4)
Chain: A chain-based method used in WSNs that aggregates data
along a sequential chain from sources to sink. Our implementation
uses a centralized, probabilistic approach combining stochastic gra-
dient descent and simulated annealing. 5) NEMO: We include both
vanilla NEMO and its extension, NEMO+, which supports arbitrary
weights. For each topology and weight distribution, we individually
tune the hyperparameters.

4.2 Placement Quality
In this section, we evaluate the placement quality achieved by
NEMO-SGD, which integrates stochastic gradient descent, GPU-
parallel optimization, and a latency-focused cost function to mini-
mize the 90th-percentile end-to-end latency. To compare the per-
formance of NEMO-SGD with the original NEMO approach, we

5

Figure 4: Full-optimization and re-optimization times for
the monitoring workload (cf. Section 4.1) that increases in
complexity with the size of the topology.

compute the delta in the 90th percentile latency across datasets
with respect to the theoretical minimum defined by direct trans-
mission. Figure 3 illustrates the results. In this figure, lighter cells
represent lower average latency, while darker cells indicate higher
latency. We observed a consistent trend across various levels of het-
erogeneity, so we will only present the results for the highest level
of heterogeneity (𝑚 = 25) for both uniform and skewed load distri-
butions (𝑤 = 1 and 𝑤 ∈ [1, 50]). The optimal approach could not
produce results for the tested topologies and is therefore excluded
from our analysis.

In the light-load case (𝑤 = 1), NEMO-SGD consistently narrows
the latency gap to the theoretical lower bound across most topolo-
gies. On the FIT network, it reduces the 90th-percentile latency
delta from 0.53 ms (with NEMO+) to just 0.10 ms, representing a
5.3× improvement. In the King topology, the latency delta is halved
from 4.34 ms to 2.16 ms. In the artificial topology with 1000 nodes
(Sim-1k), it drops from 1.66 ms to 0.96 ms. PlanetLab is an exception.
NEMO+ already achieves near-optimal placement with only a 0.04
ms latency delta, whereas NEMO-SGD has a delta of 3.69 ms, which
is still significantly lower than the traditional WSN approaches.

Under heavy-tailed load distributions (𝑤 ∈ [1, 50]), the improve-
ments are even more pronounced. In Sim-1k, the latency delta
plunges from 21.8 ms to 0.29 ms, a 75× reduction. Similarly, on
the King and FIT topologies, the deltas drop from 30.7 ms to 1.59
ms and from 4.71 ms to 0.20 ms, corresponding to 19× and 23×
improvements, respectively.

These gains stem from two key properties of NEMO-SGD. First,
by extending the cost function to include capacity constraints, it
identifies more practical placement locations in terms of the opti-
mal placement in the cost space compared to the original NEMO.
Second, the use of GPU parallelism allows the optimizer to evaluate
hundreds of candidate steps within each iteration, substantially
expanding the search space without increasing wall-clock time.
Together, these factors produce placements that avoid redundant
intermediate aggregation and strictly adhere to cluster-head capac-
ity constraints, thereby achieving sharp reductions in latency.

In summary, NEMO-SGD retains NEMO’s zero-overload guaran-
tee while cutting the 90th-percentile latency by up to two orders of
magnitude compared to classical aggregation heuristics, and by up
to 75× relative to the best NEMO+ configuration under heavy load.
These results highlight the effectiveness of embedding stochastic,
GPU-accelerated optimization within the geo-distributed operator
placement pipeline.

4.3 Scalability
In this section, we evaluate the scalability of the NEMO-SGD op-
timization across topologies of different sizes. We also include an
evaluation of NEMO’s re-optimization performance. The x-axis of
Figure 4 shows an increasing number of nodes in the topology,
which also linearly increases the total number of required aggre-
gations. The y-axis represents the time taken to compute a full
placement of the DAF query in logarithmic scale. We observed a
similar trend over all tested capacity and workload distributions
and therefore present only the results for𝑤 = 1 and𝑚 = 50.

To evaluate the re-optimization of NEMO, we considered four
cases: (1) removal of random leaf nodes, (2) removal of random clus-
ter heads, (3) addition of nodes, and (4) computation of coordinates
for a node. All re-optimization strategies completed in under one
second and are summarized using their average. It is important to
note that the re-optimization approach for all NEMO variants is
the same, thus yielding the same results.

Our evaluation in Figure 4 shows that NEMO-SGD significantly
improves optimization runtime across all tested topologies. Notably,
it achieves sub-second optimization times on GPU, reducing the op-
timization duration by up to 70% compared to the standard NEMO+,
making it the fastest approach among all evaluated variants while
preserving the same placement quality as NEMO+.

To assess its hardware portability, we also evaluated a paral-
lelized CPU implementation of NEMO-SGD. Although the CPU
implementation is slower than the GPU version, it still offers a
substantial improvement over prior approaches, with optimization
times ranging from 12 to 98 seconds across different topology sizes.
This demonstrates that even without access to GPU acceleration,
NEMO-SGD remains a practical and scalable choice for large-scale
deployments. In contrast, the optimal solution requires over 15 min-
utes for topologies with fewer than 100 nodes and was manually
terminated at 20 minutes in all other cases. Similar timeouts were
observed for MST and Chain. Among these, MST could only handle
up to 10k nodes within 6 minutes, while Chain reached its limits at
1k nodes with a runtime of 5 minutes.

Although the original NEMO and NEMO+ achieve linear-time
complexity, they can take up to approximately 10 minutes for 1
million nodes. LEACH is the only baseline besides NEMO to exhibit
linear runtime, thanks to its k-d tree–based nearest neighbor search,
requiring 5 minutes for 1 million nodes. We note that although the
original NEMO and NEMO+ have a slower optimization phase
compared to LEACH due to their more complex computations, such
as optimal operator placement in the NCS and overload prevention,
their strength lies in dynamic adaptability. NEMO’s re-optimization
consistently takes under one second. Thanks to advancements in
NEMO-SGD, the optimization time for full placements in topologies
with millions of nodes is now nearly as fast as the constant re-
optimization times of NEMO, allowing both optimization and re-
optimization to be completed in under one second on GPU and in
just over a minute on CPU.

4.4 Summary
Our evaluation shows that NEMO-SGD significantly outperforms
all baseline methods, including the original NEMO and its optimized
variant, NEMO+. This improvement is evident in both placement

6

quality and runtime efficiency. By utilizing GPU-parallel stochastic
gradient descent and a capacity-aware cost function, NEMO-SGD re-
duces the 90th percentile latency by up to 75× compared to NEMO+
and achieves reductions of up to two orders of magnitude over tradi-
tional wireless sensor network (WSN) approaches under high-load
conditions. Additionally, it provides full placement runtimes that
are under one second, surpassing even the lightweight execution of
LEACH, while still maintaining NEMO’s strict no-overload guaran-
tees. These results establish NEMO-SGD as the most scalable and
latency-efficient solution for geo-distributed operator placement in
heterogeneous environments.

5 RELATEDWORK
We categorize existing work into two main areas: (1) operator place-
ment strategies for distributed stream processing, and (2) GPU-
accelerated approaches that enhance performance by leveraging
parallel hardware in streaming environments.

Operator Placement in Stream Processing Systems. Opera-
tor placement has been extensively studied in cloud environments,
typically focusing on minimizing end-to-end latency or inter-node
traffic within homogeneous clusters [15, 38]. Subsequent work ex-
tended these models to account for device heterogeneity [7], joint
placement–replication decisions [8], and more recently, learned
cost models for placement in hybrid edge-cloud settings [18]. How-
ever, these formulations suffer from prohibitively long solve times
on realistic, large-scale topologies and are too slow to adapt to
dynamic changes in network conditions. SBON [32] and its ex-
tension [33] improve the efficiency of single- and multi-operator
placement by reformulating the search as a cost-space optimization
problem solved via gradient descent. While faster, these methods
ignore resource capacity constraints and do not support replication
or re-optimization. Similarly, the latency-spike–aware heuristic
in [19] offers incremental placement capabilities but applies only
to newly added operators.

Beyond the stream processing domain, operator placement ana-
logues in wireless sensor networks aim to reduce energy consump-
tion through in-network aggregation schemes such as LEACH [20],
HEED [42], PEDAP [37], and PEGASIS [24]. These protocols form
multi-hop topologies where data is incrementally aggregated en
route to the sink. While highly adaptive, they focus on network
formation rather than resource-aware operator placement and thus
neglect key concerns such as latency and resource constraints.
The first approach to explicitly address the distinct challenges of
geo-distributed stream processing, while addressing replication,
adaptivity, scalability, responsiveness to topology changes, and
resource-awareness for DAFs is NEMO [9].

Critically, all prior approaches treat OP as a CPU-bound opti-
mization problem. While techniques like SBON and NEMO offer
linear scalability, they still incur substantial solve times on large
topologies. None of these methods leverage modern GPU paral-
lelism to accelerate the placement search itself. In contrast, our work
introduces a GPU-accelerated solver that achieves near-interactive
solve times while maintaining full support for resource constraints,
replication, and re-optimization. This addresses a crucial gap in
existing solutions.

GPU-accelerated execution. A separate line of work focuses
on accelerating the execution of streaming operators by offloading
them to GPUs, while leaving placement decisions to conventional,
CPU-based mechanisms. G-Storm [12] extends Apache Storm [2]
with CUDA-enabled bolts that execute entire operators on discrete
GPUs, achieving significant throughput improvements but relying
on Storm’s original, CPU-bound scheduler for placement. Flink [6]
with TornadoVM [40] compiles user-defined functions into GPU
kernels, yet uses Flink’s standard task manager for operator as-
signment. FineStream [46] introduces fine-grained co-scheduling
of windowed operators across CPU–GPU SoCs to improve through-
put and energy efficiency, but the mapping of operators to devices
is still determined by a CPU-side heuristic. WindFlow [29] and
Springald [28] offload selected operators to GPUs, but the logic
that decides when and whether to offload remains on the CPU.
dSTREAM [21] enables runtime adaptation between CPU and GPU
execution, yet its mapping algorithm also runs entirely on the CPU.

In summary, existing GPU-aware frameworks accelerate the pro-
cessing of operators but not the decision-making about where and
how they are deployed. Placement logic remains serial and CPU-
bound, resulting in decision latencies ranging from hundreds of
milliseconds to several minutes on large or frequently changing
topologies. In contrast, our work is the first to move the place-
ment optimization itself onto the GPU, enabling fast, scalable, and
resource-aware schedulingwith support for replication and efficient
re-optimization.

6 CONCLUSION
Modern stream processing systems require low-latency, resource-
efficient computation over large, geo-distributed infrastructures.
However, existing operator placement strategies are limited by
CPU-bound optimization techniques that do not scale well with
increasing topology size. In this paper, we introduced NEMO-SGD,
the first GPU-accelerated, gradient-based optimizer for operator
placement in stream processing. By replacing spring relaxation
with a parallelized Stochastic Gradient Descent algorithm, NEMO-
SGD reduces optimization runtime by up to 70% compared to the
previous state-of-the-art, while retaining support for resource con-
straints, operator replication, and efficient re-optimization.

By offloading placement computation to the GPU, NEMO-SGD
establishes a new direction for scalable, low-latency optimization
in distributed stream processing systems, making it highly suitable
for real-time deployment in large-scale, dynamic environments.

REFERENCES
[1] Cédric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,

Thomas Noël, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. 2015. FIT IoT-LAB: A large scale open
experimental IoT testbed. In 2nd IEEEWorld Forum on Internet of Things. 459–464.

[2] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. 2013. Adaptive on-
line scheduling in storm. In The 7th ACM International Conference on Distributed
Event-Based Systems, DEBS. 207–218.

[3] Tanapat Anusas-Amornkul and Sirasit Sangrat. 2017. Linux Server Monitoring
and Self-healing System Using Nagios. In Mobile Web and Intelligent Information
Systems - 14th International Conference, MobiWIS, Vol. 10486. 290–302.

[4] Lawrence Benson, Philipp M. Grulich, Steffen Zeuch, Volker Markl, and Tilmann
Rabl. 2020. Disco: Efficient Distributed Window Aggregation. In Proceedings
of the 23rd International Conference on Extending Database Technology, EDBT.
423–426.

[5] David Burrell, Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch,
and Volker Markl. 2023. Workload Prediction for IoT Data Management Systems.

7

In Datenbanksysteme fur Business, Technologie und Web, BTW.
[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).

[7] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli.
2016. Optimal operator placement for distributed stream processing applications.
In Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems, DEBS. 69–80.

[8] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo
Russo. 2018. Optimal operator deployment and replication for elastic distributed
data stream processing. Concurr. Comput. Pract. Exp. 30, 9 (2018).

[9] Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Alphan Eracar, Steffen Zeuch, and
Volker Markl. 2024. Efficient Placement of Decomposable Aggregation Functions
for Stream Processing over Large Geo-Distributed Topologies. Proceedings of the
VLDB Endowment 17, 6 (2024), 1501–1514.

[10] Xenofon Chatziliadis, Eleni Tzirita Zacharatou, Steffen Zeuch, and Volker Markl.
2021. Monitoring of Stream Processing Engines Beyond the Cloud: An Overview.
Open J. Internet Things 7, 1 (2021), 71–82.

[11] Yang Chen, Xiao Wang, Cong Shi, Eng Keong Lua, Xiaoming Fu, Beixing Deng,
and Xing Li. 2011. Phoenix: A Weight-Based Network Coordinate System Using
Matrix Factorization. IEEE Trans. Netw. Serv. Manag. 8, 4 (2011), 334–347.

[12] Zhenhua Chen, Jielong Xu, Jian Tang, Kevin Kwiat, and Charles Kamhoua. 2015.
G-Storm: GPU-enabled high-throughput online data processing in Storm. In 2015
IEEE International Conference on Big Data (Big Data). IEEE, 307–312.

[13] Brent N. Chun, David E. Culler, Timothy Roscoe, Andy C. Bavier, Larry L. Peter-
son, Mike Wawrzoniak, and Mic Bowman. 2003. PlanetLab: An overlay testbed
for broad-coverage services. Comput. Commun. Rev. 33, 3 (2003), 3–12.

[14] Frank Dabek, Russ Cox, M. Frans Kaashoek, and Robert Tappan Morris. 2004.
Vivaldi: A decentralized network coordinate system. In Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM. 15–26.

[15] Raphael Eidenbenz and Thomas Locher. 2016. Task allocation for distributed
stream processing. In 35th Annual IEEE International Conference on Computer
Communications, INFOCOM. 1–9.

[16] Stefano Forti, Marco Gaglianese, and Antonio Brogi. 2021. Lightweight self-
organising distributed monitoring of Fog infrastructures. Future Gener. Comput.
Syst. 114 (2021), 605–618.

[17] P. Krishna Gummadi, Stefan Saroiu, and Steven D. Gribble. 2002. King: Estimating
latency between arbitrary internet end hosts. Comput. Commun. Rev. 32, 3 (2002),
11.

[18] Roman Heinrich, Carsten Binnig, Harald Kornmayer, and Manisha Luthra. 2024.
Costream: Learned Cost Models for Operator Placement in Edge-Cloud Environ-
ments. In 2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 96–109.

[19] Thomas Heinze, Yuanzhen Ji, Lars Roediger, Valerio Pappalardo, Andreas Meister,
Zbigniew Jerzak, and Christof Fetzer. 2015. FUGU: Elastic Data Stream Processing
with Latency Constraints. IEEE Data Eng. Bull. 38, 4 (2015), 73–81.

[20] Wendi Rabiner Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan.
2000. Energy-Efficient Communication Protocol for Wireless Microsensor Net-
works. In 33rd Annual Hawaii International Conference on System Sciences, HICSS.
10–20.

[21] Gyeonghwan Jung, Yeonwoo Jeong, Kyuli Park, Dongjae Lee, Hongsu Byun,
Suyeon Lee, and Sungyong Park. 2024. dStream: An Online-based Dynamic
Operator-level Query Mapping Scheme on Discrete CPU-GPU Architectures.
IEEE Access (2024).

[22] Richard M. Karp. 2010. Reducibility Among Combinatorial Problems. In 50 Years
of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art.
Springer, 219–241.

[23] Aljoscha P. Lepping, Hoang Mi Pham, Laura Mons, Balint Rueb, Philipp M.
Grulich, Ankit Chaudhary, Steffen Zeuch, and Volker Markl. 2023. Showcasing
Data Management Challenges for Future IoT Applications with NebulaStream.
Proc. VLDB Endow. 16, 12 (2023), 3930–3933.

[24] Stephanie Lindsey, Cauligi S. Raghavendra, and Krishna M. Sivalingam. 2002.
Data Gathering Algorithms in Sensor Networks Using Energy Metrics. IEEE
Trans. Parallel Distributed Syst. 13, 9 (2002), 924–935.

[25] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. 2005.
TinyDB: An acquisitional query processing system for sensor networks. ACM
Trans. Database Syst. 30, 1 (2005), 122–173.

[26] Quazi Mamun. 2012. A Qualitative Comparison of Different Logical Topologies
for Wireless Sensor Networks. Sensors 12, 11 (2012), 14887–14913.

[27] Matthew L. Massie, Brent N. Chun, and David E. Culler. 2004. The Ganglia
distributed monitoring system: Design, Implementation, and Experience. Parallel
Comput. 30, 5-6 (2004), 817–840.

[28] Gabriele Mencagli, Patrizio Dazzi, and Massimo Coppola. 2024. Springald: GPU-
accelerated Window-based Aggregates over Out-of-Order Data Streams. IEEE
Transactions on Parallel and Distributed Systems (2024).

[29] Gabriele Mencagli, Massimo Torquati, Andrea Cardaci, Alessandra Fais, Luca
Rinaldi, and Marco Danelutto. 2021. Windflow: High-speed continuous stream

processing with parallel building blocks. IEEE Transactions on Parallel and
Distributed Systems 32, 11 (2021), 2748–2763.

[30] Xia Pan, Xia Zhang, Hongyi Yu, and Chao Zhang. 2009. Study on routing protocol
forWSNs based on the improved Prim algorithm. In 2009 International Conference
on Wireless Communications & Signal Processing. 1–4.

[31] Elena Beatriz Ouro Paz, Eleni Tzirita Zacharatou, and Volker Markl. 2021. To-
wards Resilient Data Management for the Internet of Moving Things. In Daten-
banksysteme für Business, Technologie und Web, BTW. 279–301.

[32] Peter R. Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos,
Matt Welsh, and Margo I. Seltzer. 2006. Network-Aware Operator Placement for
Stream-Processing Systems. In Proceedings of the 22nd International Conference
on Data Engineering, ICDE. 49.

[33] Stamatia Rizou, Frank Dürr, and Kurt Rothermel. 2010. Solving the Multi-
Operator Placement Problem in Large-Scale Operator Networks. In Proceedings
of the 19th International Conference on Computer Communications and Networks,
ICCCN. 1–6.

[34] Atul Sandur, ChanHo Park, Stavros Volos, Gul Agha, and Myeongjae Jeon. 2022.
Jarvis: Large-scale Server Monitoring with Adaptive Near-data Processing. In
38th IEEE International Conference on Data Engineering, ICDE. 1408–1422.

[35] Zhitao Shen, Vikram Kumaran, Michael J. Franklin, Sailesh Krishnamurthy, Amit
Bhat, Madhu Kumar, Robert Lerche, and Kim Macpherson. 2015. CSA: Streaming
Engine for Internet of Things. IEEE Data Eng. Bull. 38, 4 (2015), 39–50.

[36] Nitin Sukhija and Elizabeth Bautista. 2019. Towards a Framework for Monitoring
and Analyzing High Performance Computing Environments Using Kubernetes
and Prometheus. In IEEE SmartWorld, Ubiquitous Intelligence & Computing, Ad-
vanced & Trusted Computing, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation. 257–262.

[37] Hüseyin Özgür Tan and Ibrahim Korpeoglu. 2003. Power efficient data gathering
and aggregation in wireless sensor networks. SIGMOD Rec. 32, 4 (2003), 66–71.

[38] Cory Thoma, Alexandros Labrinidis, and Adam J. Lee. 2014. Automated operator
placement in distributed Data Stream Management Systems subject to user
constraints. In Workshops Proceedings of the 30th International Conference on
Data Engineering Workshops, ICDE. 310–316.

[39] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali
Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion Stoica. 2017. Drizzle: Fast
and Adaptable Stream Processing at Scale. In Proceedings of the 26th Symposium
on Operating Systems Principles. 374–389.

[40] Maria Xekalaki, Juan Fumero, and Christos Kotselidis. 2018. Dynamic Accel-
eration of Big Data Applications on Heterogeneous Hardware Resources. In
proceedings of the 1st International Workshop on Next Generation Clouds for Ex-
treme Data Analytics (Xtreme-Cloud), F.

[41] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. 2008. Wireless sensor
network survey. Computer networks 52, 12 (2008), 2292–2330.

[42] Ossama Younis and Sonia Fahmy. 2004. HEED: A Hybrid, Energy-Efficient,
Distributed Clustering Approach for Ad Hoc Sensor Networks. IEEE Trans. Mob.
Comput. 3, 4 (2004), 366–379.

[43] Wang Yue, Lawrence Benson, and Tilmann Rabl. 2023. Desis: Efficient Win-
dow Aggregation in Decentralized Networks. In Proceedings 26th International
Conference on Extending Database Technology, EDBT. 618–631.

[44] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavri-
ilidis, Dimitrios Giouroukis, Philipp M. Grulich, Sebastian Breß, Jonas Traub,
and Volker Markl. 2020. The NebulaStream Platform for Data and Application
Management in the Internet of Things. In 10th Conference on Innovative Data
Systems Research, CIDR.

[45] Steffen Zeuch, Eleni Tzirita Zacharatou, Shuhao Zhang, Xenofon Chatziliadis,
Ankit Chaudhary, Bonaventura Del Monte, Dimitrios Giouroukis, Philipp M.
Grulich, Ariane Ziehn, and VolkerMarkl. 2020. NebulaStream: ComplexAnalytics
Beyond the Cloud. Open J. Internet Things 6, 1 (2020), 66–81.

[46] Feng Zhang, Lin Yang, Shuhao Zhang, Bingsheng He, Wei Lu, and Xiaoyong
Du. 2020. {FineStream}:{Fine-Grained}{Window-Based} stream processing
on {CPU-GPU} integrated architectures. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). 633–647.

8

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Stream Processing Model
	2.2 Resource Model
	2.3 Problem Definition

	3 NEMO SGD
	3.1 Unified Latency–Capacity Objective
	3.2 GPU Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Placement Quality
	4.3 Scalability
	4.4 Summary

	5 Related Work
	6 Conclusion
	References

