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Abstract: Spatial data is generated daily from numerous sources such as GPS-enabled devices,
consumer applications (e.g., Uber, Strava), and social media (e.g., location-tagged posts). This
exponential growth in spatial data is driving the development of efficient spatial data processing systems.

In this study, we enhance spatial indexing with a machine-learned search technique developed
for single-dimensional sorted data. Specifically, we partition spatial data using six traditional spatial
partitioning techniques and employ machine-learned search within each partition to support point,
range, distance, and spatial join queries. By instance-optimizing each partitioning technique, we
demonstrate that: (i) grid-based index structures outperform tree-based ones (from 1.23× to 2.27×),
(ii) learning-enhanced spatial index structures are faster than their original counterparts (from 1.44×
to 53.34×), (iii) machine-learned search within a partition is 11.79% - 39.51% faster than binary
search when filtering on one dimension, (iv) the benefit of machine-learned search decreases in the
presence of other compute-intensive operations (e.g. scan costs in higher selectivity queries, Haversine
distance computation, and point-in-polygon tests), and (v) index lookup is the bottleneck for tree-based
structures, which could be mitigated by linearizing the indexed partitions.
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1 Introduction

In today’s data-driven world, the volume of spatial data is rapidly increasing. For example, the
NYC Taxi Rides dataset [NYC19] includes over 2.7 billion rides since 2009, corresponding
to more than 650,000 rides per day. However, this is only a fraction of the location data
captured by many applications today. Uber, a popular ride-hailing service, operates on
a global scale and completed 10 billion rides in 2018 [Ub18]. To meet the increasing
demands of spatial applications today, there are numerous research efforts on scale-out sys-
tems [Aj13, AN20, EM15, El17, HGS17, Ta16, Th19, To20, Xi16, YZG15, YWS15, El21],
databases [Go19, Ma19, Mon13, Ora19, Pa16], improving spatial query proces-
sing [Ga20, Ki20a, Ki18, Si18, Ts19, Tz19, Wi21, Tz21, Cu22, Vu21b, SE22, GTM23], or
leveraging modern hardware and compiling techniques [DF20, TR20, Tz17, DF22b, DF22a].
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Recently, Kraska et al. [Kr18] proposed using learned models instead of traditional
database indexes to predict the location of a key in a sorted dataset and demonstrated
that they are typically faster than binary searches. Kester et al. [KAI17] showed that
index scans are more efficient than optimized sequential scans in main-memory analytical
engines for queries that select a small portion of the data. In this paper, we build on
these recent research results and thoroughly investigate the impact of applying ideas
from learned index structures (e.g., Flood [Na20]) on classical multidimensional indexes.

Fig. 1: Machine Learning vs. Binary Search (Spatial
Range Query). For low selectivity (0.00001%), the index
and boundary refinement phases dominate. For high
selectivity (0.1%), the scan phase dominates. Parameters
are tuned to favor Binary Search.

Specifically, we focus on six core
spatial indexing techniques, namely li-
nearization using Hilbert space-filling
curve, fixed-grid [BF79], adaptive-
grid [NHS84], Kd-tree [Be75], Quadt-
ree [FB74] and STRtree [LEL97] for
read-only datasets. Query processing
using these indexing techniques typi-
cally consists of three phases: index
lookup, boundary refinement, and
scanning. The index lookup phase
identifies the intersecting partitions,
the boundary refinement phase locates
the lower bound of the query on the
sorted dimension within the partition,
and the scan phase scans the partition to
find the qualifying points. Section 2.3
provides more details on these pha-
ses. In this paper, we propose using
learned models, such as RadixSpli-
ne [Ki20b], to replace the traditional
search techniques (e.g., binary search) used in the boundary refinement phase.

Interestingly, we discovered that using a learned model as the search technique for boundary
refinement can significantly improve query runtime, particularly for low-selectivity 8 range
queries. This applies to various queries, but the benefit decreases when other dominant
costs such as scans, Haversine distance computations, and point-in-polygon tests are present.
Figure 1 shows the average running time of a range query using adaptive-grid on a Tweets
dataset, which consists of 83 million records (Section 3.2 provides more details about the
dataset), with and without learning. As shown in the figure, for a low-selectivity query
(selecting 0.00001% of the data, i.e., 8 records), the index and boundary refinement times
dominate. In contrast, for a high-selectivity query (selecting 0.1% of the data, i.e., 83 thousand
records), the scan time dominates.

Additionally, our study found that one-dimensional grid partitioning techniques (e.g.,
fixed-grid) benefit more from the use of learned models than two-dimensional techniques

8 We adopt the definition of “selectivity” used by Pat Selinger et al. [Se79]. Therefore, low selectivity indicates that
the result set of a query has few qualifying tuples, while high selectivity indicates the opposite.



(e.g., Quadtree). We have also discovered that, contrary to conventional wisdom, grid-based
indexes, which filter on one dimension and index on the other, are consistently faster than
tree-based indexes. This is because grid-based indexes typically have very large partitions for
optimal performance, allowing fast searches based on learned models within each partition.
This advantage might not extend to disk-based index structures due to the confinement of
partition size by page dimensions. We also note that another advantage of grid-based indexes
is that they are the simplest to implement.

In this paper, we extend the work presented in our previous publication [Pa20a]. In that
previous work, we showed preliminary results only for range queries using three datasets and
five learned indexes. In this study, we expand on our previous research by adding three more
query types (i.e., point, distance, and spatial join), a new learning-enhanced index based on
the linearization using the Hilbert curve, and two competitive methods commonly used in
various applications and systems [Pa20b, Pa21] (i.e., JTS STRtree and S2PointIndex). Our
study highlights the effectiveness of different spatial index structures when combined with
learned models. By evaluating multiple query types and index structures, we aim to guide
researchers and practitioners in selecting the best approach for their needs. Furthermore, our
findings contribute to the design of improved spatial indexing methods using learned models.

Outline. The remainder of this paper is structured as follows. Section 2 presents the spatial
indexing techniques that we implemented in our work, their learned variants, as well as the
implementation of the different query types. Then, Section 3 presents our experimental study.
Finally, we discuss related work in Section 4 before concluding in Section 5.

2 Approach

In this section, we describe the spatial indexing techniques we implemented (Section 2.1),
explain how we built the learned indexes (Section 2.2), and detail the implementation of each
query type (range, point, distance, and spatial join) in Sections 2.3- 2.6.

2.1 Indexing Techniques
Multidimensional access methods are classified into Point Access Methods (PAMs) and
Spatial Access Methods (SAMs) [GG98]. PAMs handle point data without spatial extent,
while SAMs handle extended objects such as linestrings and polygons. This work focuses
on PAMs. Spatial partitioning splits a spatial dataset into partitions, or cells, where objects
within the same partition are close in space. There are two types of spatial partitioning: space
partitioning, which divides the embedded space, and data partitioning, which divides the
data space. In this work, we use three spatial partitioning techniques: linearization using the
Hilbert curve, fixed-grid [BF79], and Quadtree [FB74], and three data partitioning techniques:
adaptive-grid [NHS84], K-d tree [Be75], and Sort-Tile-Recursive (STR) [LEL97]. Figure 2
illustrates these techniques on a sample of the Tweets dataset used in our experiments (cf.
Section 3.2), with points and partition boundaries shown as dots and grid axes, respectively.



(a) Hilbert Space Filling Curve (b) Fixed-grid (c) Adaptive-grid

(d) K-d tree (e) Quadtree (f) STRtree
Fig. 2: An illustration of the different partitioning techniques.

2.1.1 Linearization using Hilbert Curve
Applying learned models to a spatial (multidimensional) index is challenging due to the lack
of inherent sort order. We address this using the Hilbert space-filling curve (SFC) [Hi35] to
map the multidimensional space to one dimension. As shown in Figure 2(a), linearization with
the Hilbert SFC involves dividing the two-dimensional space into a uniform grid and using the
Hilbert curve to enumerate the grid’s cells. Once enumerated, we can sort their identifiers and
learn an index on this sorted order. This approach is similar to the recently proposed Z-order
Model (ZM) index [Wa19], which uses the Z-curve for cell enumeration. We chose the Hilbert
curve as it performs better for multi-dimensional indexing [LK01, LK00, Mo01, Dat21].
However, we show that linearization-based techniques can suffer from skewed cases, where
queries cover a large portion of the curve, as shown in Section 3.4.2. For example, if a query
rectangle covers all partitions at the bottom of Figure 2(a), the curve would lie entirely within
the query, causing many irrelevant points to be scanned and leading to poor performance.

2.1.2 Fixed and Adaptive Grid
Grid-based indexing optimizes record retrieval by dividing the d-dimensional attribute space
into cells, each pointing to a data page (or bucket). Data points that fall within the boundaries
of a cell are stored on the corresponding data page, allowing quick navigation to the specific
data page containing the desired records, rather than having to search through the entire
dataset. The fixed-grid [BF79] enforces equidistant grid lines, while the adaptive-grid (or
grid file [NHS84]) relaxes this constraint. Instead, to define the partition boundaries of the
d-dimensions, the adaptive-grid introduces an auxiliary data structure containing a set of
d-dimensional arrays called linear scales. In our implementation, we divide the space along
one dimension and use the other dimension as the sort dimension. We also note that grid-based
indexes are the simplest to implement since they only require maintaining a vector of grid lines
and computing the intersection between the vector and a given query using offset computation
and binary search for fixed-grid and adaptive-grid, respectively.



2.1.3 K-d tree
The K-d tree [Be75] is a binary search tree that recursively subdivides space into equal
subspaces using rectilinear (or iso-oriented) hyperplanes. The splitting hyperplanes, called
discriminators, alternate between the 𝑘 dimensions at each tree level. In a 2-dimensional
space, the splitting hyperplanes alternate between being perpendicular to the x- and y-axes.
The original K-d tree splits space into equal halves but becomes unbalanced with skewed data.
To ensure balanced partitions, we can instead use a data-aware approach, dividing the data at
each level based on the median point. We implemented this data-aware K-d tree in our work.

2.1.4 Quadtree
The Quadtree [FB74] partitions the space similarly to the K-d tree but is not binary. For d
dimensions, internal nodes have 2𝑑 children. In 2D, each internal node has four children
representing rectangles. The search space is recursively divided into four quadrants until each
contains fewer objects than a predefined threshold, typically the page size. Quadtrees are
generally not balanced, as the tree goes deeper in areas of higher density.

2.1.5 Sort-Tile-Recursive packed R-tree
An R-tree [Gu84] is a hierarchical data structure for efficient range queries. It approximates
geometric objects with minimum bounding rectangles (MBRs). Each node stores up to N
entries containing a rectangle 𝑅 and a pointer 𝑃. 𝑅 is the MBR of an object (at the leaf level)
or a subtree (in internal nodes), and 𝑃 points to that object or subtree.

The Sort-Tile-Recursive (STR) packing algorithm [LEL97] efficiently fills R-trees by
tiling the data space into an 𝑆×𝑆 grid, where 𝑆=

√︁
𝑃/𝑁 (with 𝑃 as the number of points and 𝑁

the node capacity). It first sorts data by the x-dimension, divides it into 𝑆 vertical slices, then
sorts within each slice by the y-dimension, and packs nodes in runs of length 𝑁 . This process
continues recursively, filling all nodes except the last, which may have fewer than 𝑁 elements.

2.2 Index Building

Algorithm 1: Generic method for buil-
ding learning-enhanced indexes

Input :𝐷: the input location dataset; 𝑙: the
partition size

Output :𝐷′: the partitioned and indexed input
dataset

1 𝐷′←{}
2 𝑃← Partition(some approach from the

techniques described in Section 2.1, 𝑙)
3 for 𝑝 ∈ 𝑃 do
4 Sort(𝑝, 𝑦)
5 BuildLearnedIndex(𝑝, 𝑦)
6 𝐷′←𝐷′∪{𝑝}
7 end
8 return 𝐷′

In this section, we outline how we can turn
the above indexing techniques into learned
indexes for a location dataset 𝐷 containing
points in latitude/longitude format (referred
to as the x- and y-dimensions, respectively,
for ease of understanding).

First, we partition 𝐷 using one of the
techniques described in Section 2.1 into par-
titionsof size 𝑙 points.We thensort thepoints
within each partition on the y-dimension and
build a learned index on the y-dimension
for each partition. Algorithm 1 outlines the
index building process.



2.3 Range Query Processing Algorithm 2: Range Query Algorithm
Input :𝐷′: a partitioned and indexed input

dataset; 𝑞: a query range
Output :𝑅𝑄: a set of all points in 𝐷′ within 𝑞

1 𝑅𝑄←{}
/* find intersected partitions (IP) */

2 𝐼𝑃← IndexLookup(𝐷′, 𝑞)
3 for 𝑖 𝑝 ∈ 𝐼𝑃 do

/* if completely inside x-dim. range
*/

4 if 𝑞𝑥𝑙 <= 𝑖 𝑝𝑥𝑙 and 𝑖 𝑝𝑥ℎ <= 𝑞𝑥ℎ then
/* if completely inside y-dim.
range, copy entire partition
*/

5 if 𝑞𝑦𝑙 <= 𝑖 𝑝𝑦𝑙 and 𝑖 𝑝𝑦ℎ <= 𝑞𝑦ℎ then
/* copy points in partition
*/

6 𝑅𝑄← 𝑅𝑄 ∪ 𝑖 𝑝
7 else

/* lower bound */
8 𝑙𝑏← EstimateFrom(𝑖 𝑝, 𝑞𝑦𝑙)

/* get exact lower bound */
9 𝑙𝑏← LocalSearch(𝑖 𝑝, 𝑙𝑏, 𝑞𝑦𝑙)

/* upper bound */
10 𝑢𝑏← EstimateTo(𝑖 𝑝, 𝑞𝑦ℎ)

/* get exact upper bound */
11 𝑢𝑏← LocalSearch(𝑖 𝑝, 𝑢𝑏, 𝑞𝑦ℎ)

/* copy points between lower
and upper bound */

12 𝑅𝑄← 𝑅𝑄 ∪ 𝑖 𝑝.range(𝑙𝑏, 𝑢𝑏)
13 end
14 else

/* lower bound */
15 𝑙𝑏← EstimateFrom(𝑖 𝑝, 𝑞𝑦𝑙)
16 𝑙𝑏← SearchPoint(𝑖 𝑝, 𝑙𝑏, 𝑞𝑦𝑙)

/* upper bound */
17 𝑢𝑏← EstimateTo(𝑖 𝑝, 𝑞𝑦ℎ)
18 𝑢𝑏← LocalSearch(𝑖 𝑝, 𝑢𝑏, 𝑞𝑦ℎ)

/* scan */
19 for 𝑖 ∈ [𝑙𝑏,𝑢𝑏] do

/* 𝑖𝑡ℎ point in partition 𝑖 𝑝

*/
20 𝑝← 𝑖 𝑝𝑖
21 if 𝑝 within 𝑞 then
22 𝑅𝑄←𝑅𝑄∪{𝑝}
23 end
24 end
25 end
26 end
27 return 𝑅𝑄

A two-dimensional range query takes as input
a query range 𝑞 with a lower ((𝑞𝑥𝑙 ,𝑞𝑦𝑙)) and
an upper ((𝑞𝑥ℎ,𝑞𝑦ℎ)) bound in both dimensi-
ons and a location dataset 𝐷, containing two-
dimensional points represented by (𝑝𝑥 ,𝑝𝑦). It
returns all points in 𝐷 contained in the query
range 𝑞. Formally:

𝑅𝑎𝑛𝑔𝑒(𝑞,𝐷)= { 𝑝|𝑝 ∈𝐷 : (𝑞𝑥𝑙 ≤ 𝑝𝑥)∧
(𝑞𝑦𝑙 ≤ 𝑝𝑦)∧(𝑞𝑥ℎ ≥ 𝑝𝑥)∧(𝑞𝑦ℎ ≥ 𝑝𝑦) }.

To accelerate query processing, we use the
partitioned and indexed input dataset 𝐷′ gene-
rated by Algorithm 1. Given 𝐷′, range query
processing works in three phases, as shown in
Algorithm 2.

Phase I: Index Lookup. The index lookup
phase identifies partitions that intersect with
thegiven rangequeryusing the indexdirectory,
i.e., the grid directories or trees. These inter-
sected partitions, denoted as 𝐼𝑃, are shown
in line 2 of Algorithm 2. Note that the speci-
fic method used for this step depends on the
partitioning technique.

Phase II: Boundary Refinement. After iden-
tifying intersected partitions, the next step is to
locate query bounds on the sorted dimension
within each partition. If a partition is fully wi-
thin the query range, all its points are returned
immediately (Algorithm 2, line 6). For partial
intersections, there are two cases: (1) If the
partition is fully within the x-dimension ran-
ge, we employ a search technique to compute
the lower and upper bounds and then copy all
points within these bounds(lines 8-12 of the al-
gorithm). (2) If the partition is not fully within
the x-dimension range, we compute the lower
and upper bounds on the sorted y-dimension,
then switch to the scan phase.

Typically, binary search is used as the search technique. In this paper, we propose replacing
it with a learned model, specifically the RadixSpline index [Ki20b, Ki20c], to search the
sorted dimension more efficiently. RadixSpline has two components: spline points and a radix



table. The radix table quickly identifies the spline points for a given lookup key (in our case,
the sorted dimension). At lookup time, the radix table is first used to determine the range of
spline points. Then, these spline points are searched to find those surrounding the lookup key,
and linear interpolation is applied to predict the lookup key’s position in the sorted array.

Given the inherent error introduced by the RadixSpline (and generally, learned indexes),
a local search (𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ() in Algorithm 2) is needed to find the exact query bound.
Without loss of generality, we describe the local search procedure for the computation of the
lower query bound. For range scans, there are two cases: (1) If the estimated value is lower
than the true lower bound, scan upward to the lower bound. (2) If the estimated value is higher,
scan downward to the lower bound, materializing all encountered points. This search incurs
no extra materialization costs unless the estimate exceeds the query’s upper bound, as points
within query bounds are materialized anyway.

Phase III: Scan. When the partition partially intersects the x-dimension range, then after
determining theboundsof thequeryon the sorteddimension in theboundary refinement phase,
the final step is to scan the partition to find the qualifying points on the x-dimension. During
this scan phase, we iterate through the partition starting from the determined lower bound
and continue until we reach either the upper bound of the query on the sorted y-dimension or
the end of the partition. This process is reflected in Algorithm 2 from line 14 onward.

2.4 Point Query Processing
A point query takes a query point 𝑞𝑝 and a set of geometric objects 𝐷 as input. It returns true
if 𝑞𝑝 is found within 𝐷, and false if it is not. Formally:

𝑃𝑜𝑖𝑛𝑡 (𝑞𝑝 ,𝐷)= ∃ 𝑝 ∈𝐷. 𝑞𝑝 .𝑥= 𝑝.𝑥∧𝑞𝑝 .𝑦= 𝑝.𝑦.

We use the partitioned and indexed dataset 𝐷′ from Algorithm 1 to speed up point queries,
as outlined in Algorithm 3. First, we perform 𝐼𝑛𝑑𝑒𝑥𝐿𝑜𝑜𝑘𝑢𝑝() using a degenerate rectangle
from query point 𝑞𝑝 . If no intersecting partition is found, we return false. Otherwise, we search
the partition in two steps: (i) estimate the point’s location in the y-dimension using the learned
search method, and (ii) refine the result with 𝑆𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑖𝑛𝑡 () to correct errors introduced by
the learned search technique, similar to 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ() in range query processing.

For the RadixSpline, there are three cases for the 𝑆𝑒𝑎𝑟𝑐ℎ𝑃𝑜𝑖𝑛𝑡 () procedure. First (second),
if the estimated value is lower (higher) than the lower (upper) bound on the sorted dimension,
we scan upward (downward) and compare the elements on the sorted dimension until reaching
the lower (upper) bound. We then continue scanning and comparing elements on both
dimensions until finding the query point or reaching the partition’s upper (lower) bound.
Third, if the estimated value matches the query point’s value on the search dimension, we
scan upward, comparing on both dimensions, to locate the query point. If the partition’s upper
bound is reached without finding the point, we then scan downward, again comparing on both
dimensions, until we locate the query point or reach the partition’s lower bound.



Algorithm 3: Point Query
Input :𝐷′: a partitioned and indexed input

dataset; 𝑞𝑝 : a query point
Output :𝑡𝑟𝑢𝑒 if the point 𝑞𝑝 is in 𝐷′,

𝑓 𝑎𝑙𝑠𝑒 otherwise
/* find intersected partition (IP) */

1 𝐼𝑃← IndexLookup(𝐷′, 𝑞𝑝)
/* search within the partition */

2 if 𝐼𝑃 ≠ ∅ then
/* get estimate */

3 𝑒𝑠𝑡← EstimateFrom(𝐼𝑃, 𝑞𝑝 .𝑦)
4 𝑓 𝑜𝑢𝑛𝑑← SearchPoint(𝑖 𝑝, 𝑒𝑠𝑡 , 𝑞𝑝)
5 return 𝑓 𝑜𝑢𝑛𝑑

6 else
7 return 𝑓 𝑎𝑙𝑠𝑒

8 end

Algorithm 4: Distance Query
Input :𝐷′: partitioned and indexed input

dataset; 𝑞𝑝 : query point; 𝑑: distance
Output :𝐷𝑄: set of points in 𝐷′ within

distance 𝑑 of 𝑞𝑝

1 𝐷𝑄←{}
/* Get the circle’s MBR */

2 𝑚𝑏𝑟← GetMBR(𝑞𝑝 , 𝑑)
/* Filter using 𝑚𝑏𝑟 */

3 𝑅𝑄← RangeQuery(𝐷′, 𝑚𝑏𝑟)
/* Refine */

4 for 𝑝 ∈ 𝑅𝑄 do
5 if WithinDistance(𝑝, 𝑞𝑝 , 𝑑) then
6 𝐷𝑄←𝐷𝑄∪{𝑝}
7 end
8 end
9 return 𝐷𝑄

In the case of a binary search, the process is simpler. We first use the value of the query
point on the sorted dimension to find the lower bound. Then, we scan upward, comparing on
both dimensions, until we find the query point.

2.5 Distance Query Processing Algorithm 5: Join Query
Input :𝐷′: partitioned and indexed input

dataset; 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠: a set of
polygons

Output :𝐽𝑄: a set of sets, a set of points
within each polygon in 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠

1 𝐽𝑄←{}
2 for 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 ∈ 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑠 do

/* Get minimum bounding rectangle
(mbr) of the polygon */

3 𝑚𝑏𝑟← GetMBR(𝑝𝑜𝑙𝑦𝑔𝑜𝑛)
/* Filter using 𝑀𝐵𝑅 */

4 𝑅𝑄← RangeQuery(𝐷, 𝑚𝑏𝑟)
5 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑←{}

/* Refine */
6 for 𝑝 ∈ 𝑅𝑄 do
7 if Contains(𝑝𝑜𝑙𝑦𝑔𝑜𝑛, 𝑝) then
8 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑←

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑∪{𝑝}
9 end

10 end
11 𝐽𝑄← 𝐽𝑄∪{𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑}
12 end
13 return 𝐽𝑄

A distance query takes a query point 𝑞𝑝, a
distance 𝑑, and a set of geometric objects 𝐷.
It returns all objects in 𝐷 that lie within the
distance 𝑑 from the query point 𝑞𝑝 . Formally:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑞𝑝 ,𝑑,𝐷)= { 𝑝|𝑝 ∈𝐷∧
dist(𝑞𝑝 ,𝑝) ≤ 𝑑}.

As in the case of Range query proces-
sing (Section 2.3), we use the partitioned
and indexed input dataset 𝐷′ from Algo-
rithm 1 for faster query processing. The
implementation of the distance query em-
ploys the filter and refine [Or89] approach,
which is commonly used in state-of-the-art
research where various spatial queries (e.g.,
kNN, distance, and join queries) are first
decomposed to range queries as a prelimi-
nary filter, followed by query-specific refi-
nement [Qi20, Li20, Gu23, Li23a, YC23]
as well as popular database systems such as
Oracle Spatial [KRA02].



Algorithm 4 shows the algorithm for distance query processing. We first filter using a
rectangle (reflected in line 1 of Algorithm 4), whose corner vertices are at a distance of
d from the query point q. We issue a range query using this rectangle, and then refine the
resulting candidate set of points using a withinDistance predicate. Note that we are using
GPS coordinates (i.e., a Geographic coordinate system). Therefore, special attention must be
given if either of the poles or the 180th meridian is within the query distance 𝑑. We compute
the coordinates of the minimum bounding rectangle by moving along the geodesic arc as
described in [BS13] and then handle the edge cases of the poles and the 180th meridian 9.

2.6 Join Query Processing
A spatial join combines two input spatial datasets, 𝑅 and 𝑆, using a specified join predicate 𝜃
(such as overlap, intersect, contains, within, or withindistance). It returns a set of pairs (𝑟,𝑠)
where 𝑟 ∈𝑅, 𝑠∈ 𝑆 that meet the join predicate 𝜃. Formally:

𝑅⊲⊳𝜃 𝑆= { (𝑟,𝑠) |𝑟 ∈𝑅, 𝑠∈ 𝑆, 𝜃 (𝑟,𝑠) holds }.

We implemented a join query between a set of polygons and the partitioned and indexed
input location dataset 𝐷′. The join algorithm is outlined in Algorithm 5 and is based on the
filter and refine [Or89] approach.

This involves using the minimum bounding rectangle of each polygon to perform a range
query. We then refine the candidate set of points using contains as the predicate 𝜃, thus
computing all points contained in each polygon. We implemented the contains predicate using
the ray-casting algorithm, where a ray is cast from the candidate point to a point outside the
polygon, and then the number of intersections with polygon edges is counted. Some polygons
could potentially contain hundreds or thousands of edges. Therefore, to facilitate a quick
lookup of the edges intersected with the ray, we index the polygon edges in an interval tree.
We implemented the interval tree using a binary search tree. Future work will explore the
indexing of polygons with learned structures [Tz21, WY22].

3 Evaluation

3.1 Experimental Setup
Hardware Configuration. Experiments were run single-threaded on an Ubuntu 18.04
machine with an Intel Xeon E5-2660 v2 CPU (2.20 GHz, 10 cores, 3.00 GHz turbo)10 and
256 GB DDR3 RAM. To avoid NUMA effects, we use the numactl command to bind the
thread and memory to one node. CPU scaling was also disabled using the cpupower command.
9 We currently use only one bounding box. This approach is not optimal, as it can result in materializing a large

number of unnecessary points when the 180th meridian falls within the query distance. To improve efficiency, we
could break the bounding box into two parts, one on either side of the 180th meridian. We leave this optimization
for future work. Furthermore, our query workload does not include these edge cases.

10 CPU: https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-
cache-2-20-ghz.html

https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75272/intel-xeon-processor-e5-2660-v2-25m-cache-2-20-ghz.html


(a) Twitter (b) Taxi Trips (c) OSM
Fig. 3: Datasets: (a) Tweets are spread across New York, (b) NYC Taxi trips are clustered in central New
York, and (c) All Nodes dataset from OSM.

Software Configuration. In all our experiments, we sort on the longitude value of the location
within each partition. The currently available open-source implementation of RadixSpline
only supports integer values. However, most spatial datasets contain floating-point values. To
address this issue, we adapted the RadixSpline implementation to work with floating-point
values. We set the spline error to 32 for all experiments in our RadixSpline implementation.
Furthermore, we do not address updates in this work, but focus only on read-only datasets.

3.2 Datasets and Queries
For evaluation, we used three datasets, the New York City Taxi Rides dataset [NYC19] (NYC
Taxi Rides), geo-tagged tweets in the New York City area (NYC Tweets), and Open Streets
Maps (OSM). NYC Taxi Rides contains 305 million taxi rides from 2014 and 2015. NYC
Tweets data was collected using Twitter’s Developer API [Twe20] and contains 83 million
tweets. The OSM dataset is taken from [Pa18] and contains 200M records from the All Nodes
(Points) dataset. Figure 3 shows the spatial distribution of the three datasets. We further
generated two types of query workloads for each of the three datasets: skewed queries, which
follow the distribution of the underlying data, and uniform queries. For each type of query
workload, we generated six different workloads ranging from 0.00001% to 1.0% selectivity.
For example, for the Taxi Rides dataset (305M records), these queries would materialize from
30 to 3 million records. The query workloads consist of one million queries each. To generate
skewed queries, we select a record from the data and expand its boundaries (using a random
ratio in both dimensions) until the selectivity requirement of the query is met. For uniform
queries, we generate points uniformly in the embedding space of the dataset and expand the
boundaries similarly until the selectivity requirement of the query is met. The query selectivity
and the type of query are mostly application-dependent. For example, consider a user issuing
a query to find a popular pizzeria nearby on Google Maps. The expected output for this query
should be a handful of records, i.e., the query selectivity is low (a list of 20-30 restaurants
near the user). On the other hand, a query on an analytical system would materialize many
more records (e.g., find the average cost of all taxi rides originating in Manhattan).
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Fig. 4: Range Query Configuration - ML vs. BS for low selectivity (0.00001%).

3.3 Baselines
All our learning-enhanced indexes are implemented in C++. We evaluate their performance
for search within partitions against binary search. Furthermore, we compare our learning-
enhanced indexes with the two best-performing indexes from prior studies [Pa20b, Pa21],
which compared state-of-the-art spatial libraries. More specifically, for range and distance
queries, we compare our implementation with the STRtree implementation from the Java
Topology Suite (JTS) and the S2PointIndex from Google S2. For join queries, we use
the S2ShapeIndex provided by Google S2. JTS is written in Java, whereas Google S2 is
implemented in C++. The source code used in this work is available on GitHub11.

3.4 Range Query Performance
In this section, we first explore the tuning of partition sizes and why the tuning is crucial to
obtain optimal performance. Next, we present the total query runtime when the partition size
for each index is tuned for optimal performance.

3.4.1 Tuning Indexing Techniques
Recent work in learned multidimensional and spatial indexes focuses on instance-optimizing
based on data and query workload [Kr21, Di21]. To study this effect, we conducted multiple
experiments on the three datasets by varying the sizes of the partitions, tuning them on two
workloads with different selectivities, for both skewed and uniform range queries. We omit
the results for tuning the indexing techniques for other queries (point, distance, and join) as
they are similar to the ones for range queries.

Figure 4 shows the impact of tuning for the lowest selectivity workload across two query
types. It can be seen that tuning the grid indexing techniques to the workload is crucial, as they
11 https://github.com/varpande/learnedspatial

https://github.com/varpande/learnedspatial
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Taxi Trips (Skewed Queries) Taxi Trips (Uniform Queries)

Fixed Adaptive Quadtree Fixed Adaptive Quadtree

Selectivity (%) ML BS ML BS ML BS ML BS ML BS ML BS

0.00001 1.78 2.35 1.86 2.40 2.77 2.51 2.02 2.58 81.4 10.54 1.48 1.31
0.0001 4.54 5.82 4.67 6.12 6.12 5.82 5.85 6.91 228.1 27.69 3.69 3.42
0.001 14.97 18.83 15.32 19.49 20.84 19.47 22.87 24.34 708.8 87.49 13.59 12.98
0.01 90.13 97.04 89.48 95.96 117.01 104.37 141.24 151.47 2634.4 309.62 98.85 112.77
0.1 678.12 698.39 675.14 696.49 922.67 793.96 988.35 922.96 9609.9 1174.79 891.24 1101.95
1.0 8333.94 8408.15 8301.56 8399.69 10678.04 9512.29 8843.71 8753.68 8574.84 8836.28 10647.97 12377.14

Tab. 1: Total query runtime (in microseconds) for RadixSpline (ML) and binary search (BS) for Taxi
Rides dataset on skewed and uniform query workloads (parameters tuned for selectivity 0.00001%).

arehighly sensitive topartition size.Performance improvesaspartition size increases, reaching
an optimal point, after which further increases degrade performance. For instance, using a
fixed-grid with 100 points per partition (a common default in many spatial libraries) leads to
up to 300× worse performance compared to the optimal size. For grid (single-dimension)
indexing techniques, optimal partition sizes are much larger than for multi-dimensional
indexing techniques (only Quadtree is shown in the figure but the same holds for the other
indexing techniques covered in this work). This results in significant performance gains when
using learned indexes, especially for skewed queries, with speedups ranging from 11.79%
to 39.51% over binary search. Even when we tuned a learned index to a partition size that
corresponds to the optimal performance for binary search, we found that the learned index
frequently outperformed the binary search. However, learned indexes offer little benefit for
techniques that filter on both dimensions (cf. Table 1), such as Quadtree and STRtree, where
optimal partition sizes are low (fewer than 1,000 points). In such cases, refinement costs
become an overhead. In contrast, the k-d tree, with optimal partition sizes ranging from 1,200
to 7,400 points for the Taxi Trips and OSM datasets, sees a performance boost of 2.43% to
9.17% with learned indexes. For the Twitter dataset, where the optimal partition size is under
1,200 points, we observed a similar drop in performance with learned indexes.

Figure 5 shows how the number of cells and points scanned in each partition impact
the query runtime for fixed-grid on Taxi Trips dataset with the lowest selectivity. As the
number of points per partition increases (i.e., there are fewer partitions), the number of cells
decreases, but more points need to be scanned. The point where these curves meet is the
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Fig. 7: Range Query Runtime on skewed and uniform queries for the three datasets.

optimal configuration for the workload, where query runtime is lowest. In contrast, for tree
structures, as shown in Figure 6, most pruning happens during the index lookup, with the
dominant cost being the number of points scanned per partition. To reduce this, tree structures
require more partitions (fewer points per partition). They pay a higher cost during the index
lookup phase due to random access and cache misses but scan fewer points once the target
partition is found, as most partitions qualify for the query.

Key Takeaways. Tuning partition sizes is critical for grid-based indexing, where larger
partitions enable faster searches with learned models. In contrast, tree-based indexes see
less benefit from learned models due to their smaller optimal partition sizes.

3.4.2 Query Performance
Figure 7 shows the query runtime for all learned index structures. It can
be seen that fixed-grid along with adaptive-grid (1D schemes) perform the
best for all cases except for uniform queries on Taxi and OSM datasets.

Taxi Rides OSM

Indexing Skewed Uniform Skewed Uniform

Fixed 1.97 7.98 1.72 23.73
Adaptive 1.74 31.57 1.51 24.80
k-d tree 1.70 21.62 1.56 30.95
Quadtree 1.79 2.12 1.37 7.96
STR 2.60 47.03 1.90 11.05

Tab. 2: Average number of partitions intersected for each indexing
method for selectivity 0.00001% on Taxi Rides and OSM datasets.

For skewedqueries,fixed-grid
is 1.23× to 1.83× faster than
the closest competitor, Quadt-
ree (2D), across all datasets
and selectivity. The slight dif-
ference in performance bet-
ween fixed-grid and adaptive-
grid comes from the index
lookup. For adaptive-grid, we
use binary search on the linear



scales to find the first partition the query intersects with. For fixed-grid, the index lookup is
almost negligible as only an offset computation is needed to find the first intersecting partition.
This is also in contrast to traditional knowledge that grid-based index structures can become
skewed and thus perform worse than tree-based index structures. Since the index structures
and data reside in memory and are tuned to optimal partition size, the grid-based structures
perform better as (1) they avoid pointer chasing as in the case of tree-based index structures,
thus leading to fewer random accesses, and (2) they can utilize the fast lookups using learned
models within the large indexed partitions. This would not be possible for disk-based index
structures. Note that partition sizes for optimal performance of grid-based index structures are
very large for every datasets. For disk-based index structures to exhibit similar performance,
it would require allocating very large pages on disk.

It can also be seen in the figure that the Quadtree is significantly better for uniform queries
in the case of the Taxi Rides dataset (1.37×) and OSM dataset (2.68×) than the closest
competitor, fixed-grid. There are two reasons for this. First, as Table 2 shows, the Quadtree
intersects with fewer partitions than the other index structures. Second, for uniform queries,
the Quadtree is more likely to traverse the sparse and low-depth region of the index. This is
consistent with previously reported findings [KP07].

In Figure 7, we can also see the performance of the learned indexes compared to JTS
STRtree and S2PointIndex. Fixed-grid is from 8.67× to 43.27× faster than the JTS STRtree
and from 24.34× to 53.34× faster than S2PointIndex. Quadtree, on the other hand, is from
6.26× to 33.99× faster than JTS STRtree, and from 17.53× to 41.91× faster than S2PointIndex.
Note that the index structures in the libraries are used with their default, out-of-the-box
settings and are not tuned. S2PointIndex performs poorly because it operates on Hilbert curve
values and is not optimized for range queries. S2PointIndex and the learned linearized Hilbert
curve index counterpart are rather similar as they both apply linearization to one dimension
for indexing. The learned counterpart is learned on the sorted values of the linearized values
where the underlying implementation is a densely packed array, while S2PointIndex stores
these linearized values in a main-memory optimized B-tree. S2PointIndex is a B-tree on the
64-bit integers called S2CellId. The cell ids are a result of the Hilbert curve enumeration of a
Quadtree-like space decomposition. Hilbert curve (as previously mentioned in Section 2.1.1)
suffers from skewed cases where the range query rectangle covers the whole curve. Our Hilbert
curve implementation uses the MBR’s extent to compute the min and max Hilbert values to
filter points leading to scanning many unnecessary points. To minimize the effect of such
cases, S2PointIndex divides the query rectangle into four parts. [Or89] first proposed a similar
approach which computes the Z-curve decomposition of the query object, a computationally
extensive operation, to minimize number of pages fetched from disk in the filter phase. The
paper highlights that there is a trade-off between decomposition cost and filtering efficiency.

Key Takeaways. Fixed-grid excels in most queries by avoiding random pointer chasing
and using fast learning-enhanced search within its large partitions. Quadtree outperforms
fixed-grid for uniform queries on Taxi and OSM, as these queries intersect fewer partitions
and only traverse the sparse, low-depth region of the index. The linearized Hilbert curve
generally underperforms, as queries require scanning a large portion of the curve.



3.5 Point Query Performance
Section 2.4 defines how the point query has been implemented in this work. JTS STRtree does
not provide a way to search for a point and thus we did not implement the point query using
JTS STRtree. On the other hand, S2PointIndex in the Google S2 library allows querying for a
point. Moreover, we run the point queries using only the skewed queries workload, which
uniformly selects a random point from the dataset itself. This ensures that the point query
actually produces a result and does not skew the results in favor of the learned indexes. It also
aligns with real-world workloads, where searching for existing points in a dataset—such as
retrieving metadata for a specific restaurant—is more common.

Tweets (83M) Taxi Rides (305M) OSM (200M)
0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

qu
er

y
ti

m
e

[n
s]

ml-fixed-grid

ml-adaptive-grid

ml-kdtree

ml-quadtree

ml-strtree

ml-hilbert

s2-pointindex

Fig. 8: Point Query Performance for skewed
queries on the three datasets.

Figure 8 shows the point query runtime
for all indexing techniques. Fixed-grid is
again the best-performing index for point
queries on skewed workloads. It is 1.94×,
2.27×, and 1.51× faster that the closest tree-
based competitor, kdtree, across Tweets,
Rides, and OSM datasets. However, the
performance difference of fixed-grid with
adaptive-grid are marginal. It is 1.37×, 1.1×,
1.04× faster than the adaptive-grid across
the Tweets, Rides, and OSM datasets. Lastly,
fixed-grid is also 2.44×, 2.56×, 2.79× faster
than S2PointIndex. Another very important
observation is that the learned index on the
linearized values is very competitive in the
point queries. This is counter-intuitive from
the observation in range queries in Section 3.4.2. We noted that range searches on sorted
Hilbert curve values perform poorly in skewed cases where the query rectangle covers a
large portion of the curve. However, for point queries, only one point on the curve needs
to be searched, rather than scanning multiple points. This makes the learned index on the
linearized values very competitive for point queries. In fact, in the case of the OSM dataset, it
is the best-performing index with an average query time of 385ns compared to 390ns for the
fixed-grid (the best-performing index in the other two datasets).

Key Takeaways. Fixed-grid performs best across all queries. In contrast to range queries,
the linearized Hilbert curve is highly competitive for point queries that require searching
for a single point on the curve.

3.6 Distance Query Performance
Weimplemented thedistancequeryusing thefilterandrefine[Or89]approach(seeSection2.5),
which is the norm in spatial databases such as Oracle Spatial [KRA02] and PostGIS [Pos23].
We index GPS coordinates and use the Harvesine distance in the refinement phase.

Figure 9 shows the distance query runtime for all indexing techniques as well as the two
spatial indexes, S2PointIndex and JTS STRtree. We can make two important observations.
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Fig. 9: Distance Query Runtime on skewed and uniform queries for the three datasets.

First, the difference in performance between the learned indexes diminishes quickly as we
increase the selectivity of the query. Grid-based indexes perform the best for lower selectivities
(0.00001% and 0.0001%), except for uniform queries on Taxi Rides and OSM datasets where
Quadtree is better, similar to range query. However, as more points qualify in the filter phase,
Haversine distance computation becomes the dominant cost, causing the performance of all
indexing methods to converge. Haversine distance is computationally expensive and requires
multiple additions, multiplications, and divisions as well as three trigonometric function calls.
Although we only use Harvesine distance on a subset of points in the filter phase, it is still
expensive to compute. The second observation is that S2PointIndex outperforms most indexes
for uniform queries on the OSM dataset. The reason for this is that after the filter phase, many
points need refinement for uniform queries for the OSM dataset. For example, for the OSM
dataset, the average number of points that need refinement after the filter phase for skewed
queries is 25, 257, and 2561 for selectivities 0.00001%, 0.0001%, and 0.001%, respectively.
For uniform queries, the average number of points that need refinement after the filter phase is
4257, 7263, 17612 (6× to 170×more than skewed queries) for the OSM dataset. The dominant
cost for most index structures is the Haversine distance computation, and thus we also do
not observe much difference in performance between the learned indexes. S2PointIndex
implements a variant12 of the branch and bound [RKV95] algorithm for distance queries. The
distance query is represented as an S2Cap, a region with a point and a radius. Its covering is
computed, and intersected with that of the S2PointIndex. The resulting cells in the intersection
are then added to a priority queue. The traversal algorithm for S2PointIndex then continues in
a manner similar to the [RKV95] traversal method, except that it is constrained by distance
rather than the k nearest objects. Therefore, the distance query using the S2PointIndex for
uniform queries on the OSM dataset is from 1.91× to 7.75× faster than the learned indexes.
This effect is not reflected in the other datasets, since after the filter phase the number of
points that qualify for Haversine distance computation is similar to that for the skewed queries
in the OSM dataset. The comparison of learned indexes with JTS STRtree is more fair since

12 The corresponding code can be found at: https://github.com/google/s2geometry/blob/master/src/s2/
s2closest_point_query_base.h#L456

https://github.com/google/s2geometry/blob/master/src/s2/s2closest_point_query_base.h#L456
https://github.com/google/s2geometry/blob/master/src/s2/s2closest_point_query_base.h#L456
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Fig. 10: Join Query Performance - Total join query runtime for the three datasets.

both the learned indexes and JTS STRtree employ the filter and refine approach to evaluate
distance queries. Fixed-grid is from 1.33× to 11.92× faster than JTS STRtree.

Key Takeaways. Learned search boosts performance for lower selectivity and skewed
queries but loses its advantage in higher selectivity or uniform queries due to the increased
number of points for refinement (i.e., Haversine distance computations).

3.7 Join Query Performance
We evaluate join queries using the filter and refine approach for the learned indexes and JTS
STRtree. We use the bounding box of the polygon objects and issue a range query on the
indexed points, while in S2, we utilize the S2ShapeIndex which is specifically built to test for
the containment of points in polygons. As mentioned in Section 2.6, we index the polygon
objects using an interval tree in case of the learned indexes. For JTS STRtree, we use the
PreparedGeometry13 abstraction to index line segments of all individual polygons, which
helps accelerating the refinement check.

We joined three different polygonal datasets with the location datasets that are in the NYC
area (i.e., Tweets andTaxiRidesdatasets). Specifically,weused theBoroughs,Neighborhoods,
and Census block boundaries consisting of five, 290, and 39192 polygons, respectively. These
datasets have an average of 662.2, 29.55, and 12.58 edges per polygon, respectively, and their
raw file sizes are 116KB, 321KB, and 20MB. For the OSM dataset, we perform the join using
the Countries dataset which consists of 255 country boundaries, has an average of 24.72
edges per polygon, and the original size of the file is 17MB. Similarly to range and distance
queries, we first find the optimal partition size for each learned index and dataset.

Figure 10 shows the join query performance, where we observe that most of the learned
indexes have similar performance. The reason behind this is that the filter phase is not
expensive for the join query, while the refinement phase is the dominant cost. This result

13 https://locationtech.github.io/jts/javadoc/org/locationtech/jts/geom/prep/PreparedGeometry.html
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Fig. 11: Indexing Costs - Index build times and sizes for the three datasets.

is in conformance to earlier studies [Pa20b, Pa21], which compared state-of-the-art spatial
libraries used by hundreds of systems and other libraries. Although we use an interval tree to
index the edges of the polygons to quickly determine the edges intersecting the ray casted
from the candidate point, this phase is still expensive. For future work, we plan to investigate
the performance using the main-memory index for polygon objects proposed in [Ki20a].

Figure 10 also shows that the learned indexes significantly outperform both JTS STRtree
and S2ShapeIndex in the join query. Fixed-grid, for example, is 1.81× to 2.69× faster than
S2ShapeIndex and 2.7× to 3.44× faster than JTS STRtree for the Tweets dataset across all
three polygonal datasets. Similarly, for the Taxi Rides dataset, fixed-grid is 2.39× to 4.96×
faster than S2ShapeIndex and 3.017× to 4.49× faster than JTS STRtree. Lastly, for the OSM
dataset, fixed-grid outperforms S2ShapeIndex by 2.89× and JTS STRtree by 7.311×.

Key Takeaways. The refinement phase of the join query involves many costly point-in-
polygon tests, negating the benefit of the fast filter phase.

3.8 Indexing Costs
Figure 11 shows that fixed-grid and adaptive-grid are faster to build than tree-based learned
indexes. Fixed-grid is 2.11×, 2.05×, and 1.90× faster to build than the closest competitor,
STRtree. Quadtree is the slowest to build because it generates a large number of cells for
optimal configuration. Not all partitions in Quadtree contain an equal number of points as it
divides the space rather than the data, thus leading to an imbalanced number of points per
partition. Fixed-grid and adaptive-grid do not generate a big number of partitions, as the
partitions are quite large for optimal configuration. They are smaller for similar reasons. The
index size in Figure 11 also includes the size of the indexed data.

In the figure, we can also see that the learned indexes are faster to build and consume less
memory than the S2PointIndex and JTS STRtree. Fixed-grid, for example, is from 2.34×



to 15.36× faster to build than S2PointIndex, and from 11.09× to 19.74× faster to build than
JTS STRtree. It also consumes less memory than S2PointIndex (from 3.04× to 3.4×) and
JTS STRtree (from 4.96× to 8.024×). However, we note that the comparison of the index
size with JTS STRtree is not completely fair. JTS STRtree is a SAM (spatial access method),
where it stores four coordinates for each point (since the points have been stored as degenerate
rectangles). The learned indexes implemented in this work are PAMs (point access method),
where we only store two coordinates for each data point.

Key Takeaways. Grid-based indexes are faster to build and use less space than tree-based
ones. Optimally-tuned grid-based indexes have fewer, larger partitions, while tree-based
indexes create many smaller ones. Embedding learned models in each partition increases
tree-based indexes’ build time and size, as they maintain more learned models.

4 Related Work

Work by Kraska et al. [Kr18] proposed replacing traditional database indexes with learned
models. Since then, machine learning has been applied to various aspects of data manage-
ment [Ki22, SUK22, Ya23, PMW22a, Sa22, SK23]. Furthermore, there has been a corpus of
work on extending the concept of learned indexes to spatial and multidimensional data.

Learned Multidimensional Indexing and Partitioning. Flood [Na20] is an in-memory
read-optimized multidimensional index that partitions 𝑑-dimensional data into grids over the
𝑑-dimensional space based on query workload and data distribution. Similarly to Flood, our
grid index implementation partitions data across 𝑑−1 dimensions and uses the last dimension
for sorting. Tsunami [Di20a, Di20b] improves Flood for handling skewed and correlated data.
Machine learning has also been applied to reduce I/O costs of disk-based multidimensional
indexes. Qd-tree [Ya20] uses reinforcement learning to optimize partitioning, while RW-
Tree [Do22], PLATON [YC23], ACR-Tree [HWL23] present learning-based approaches to
effectively pack R-Trees. The ZM-index [Wa19] combines the standard Z-order space-filling
curve with Recursive-Model Indexes (RMI) [Kr18]. BMT [Li23b], LMSFC [Ga23], and
WAZI [PMW24] use space-filling curves to optimize the page layout based on data and
workload. The ML-index [DMM20] combines the ideas of iDistance [Ja05] and RMI [Kr18]
for range and kNN queries. There are also efforts to augment existing indexes with lightweight
models to accelerate range and point queries [HKH20]. For a broader perspective, we refer
the reader to a comprehensive survey [Ma24] and an experimental analysis study [Li24] on
multi-dimensional indexing.

Learned Spatial Indexes and Algorithms. LISA [Li20] is a disk-based learned spatial
index that achieves low storage consumption and I/O cost while supporting range and
nearest neighbor queries, insertions, and deletions. In [PMW22b], the authors propose
an instance-optimized Z-curve index with alternate ordering and partitioning, and two
greedy heuristics to optimize ordering for specific workloads. When querying a traditional
R-tree, all child nodes that overlap with a given range query must be visited. In [Al22], the
authors propose identifying high-overlap queries and building an AI tree that uses uniquely



assigned IDs to the R-tree leaf nodes as class labels for multi-label classification. High-
overlap queries use the AI tree to minimize the number of visited nodes, while low-overlap
queries fall back on the regular R-tree. In [WY22], the authors focus on SAMs, compute
the Z-curve extent of the MBR enclosing a spatial object, sort the objects based on the
Z-address interval, and build a hierarchical tree structure. The internal nodes store linear
regression models and pointers to the child nodes, while the leaf nodes store linear regression
models and an array of actual objects with their MBRs. This differs from the ZM-index,
which indexes points rather than spatial objects with extents, and from the Hilbert-curve
index, which we also use for storing points. SPRIG [Zh21] is a grid index that uses spatial
bilinear interpolation to predict the position of the query points and then refines the result
using a local binary search. Spatial Join Machine Learning (SJML) [Vu21a, Vu22] is a
machine learning-based query optimizer for distributed spatial joins. It consists of three
levels: (1) a model that estimates the spatial join result size, (2) a model that predicts the
number of geometric comparisons based on the predicted result size and other dataset
characteristics, and (3) a classification model to predict the best join algorithm. In [Gu23], the
authors identify that ChooseSubtree and Split operations for the R-tree construction can be
considered sequential decision-making problems. They model them as two Markov Decision
Processes (MDP) and use reinforcement learning to train a model for each. Machine learning
techniques have been applied to spatial data in various scenarios, including spatio-textual
queries [Di22], social media data [Gu22], passage retrieval [WMW22], streaming [Yu22],
and other areas [Ki22, SUK22, Ya23, PMW22a, Gu24]. Several surveys provide an in-depth
review of the various applications of machine learning to spatial data [SM19, SM20, SM21].

5 Conclusions

In this work, we implement learning-enhanced variants of six classical read-only spatial
indexes. We found that, in most cases, the fixed grid outperforms other learning-enhanced
indexes while being the simplest index to implement. For range queries, tuning indexes to
the dataset and query workloads is crucial for performance, with learned search improving
performance by 11-39% over binary search. We also found that learned models offer minimal
gains for tree-based index structures, with fixed-grid outperforming them by 1.23× to 1.83×.
For point queries, fixed-grid was 1.51× to 2.27× faster than the closest tree-based competitor,
k-d tree. The linearized Hilbert curve index also performed well, as point queries require
searching for one point on the curve, in contrast to range queries where the index may scan
many redundant points. In distance queries, fixed-grid has again the best performance,
though gains diminish with higher selectivity, as the Haversine distance computation becomes
the bottleneck. For join queries, the filter phase performs similarly to range queries, but the
refinement phase is the dominant cost, with limited gains from learned indexes.
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