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ABSTRACT
Connected mobility applications rely heavily on geospatial joins
that associate point data, such as locations of Uber cars, to static
polygonal regions, such as city neighborhoods. These joins typi-
cally involve expensive geometric computations, which makes it
hard to provide an interactive user experience.

In this paper, we propose an adaptive polygon index that lever-
ages true hit �ltering to avoid expensive geometric computations
in most cases. In particular, our approach closely approximates
polygons by combining quadtrees with true hit �ltering, and
stores these approximations in a query-e�cient radix tree. Based
on this index, we introduce two geospatial join algorithms: an
approximate one that guarantees a user-de�ned precision, and
an exact one that adapts to the expected point distribution. In
summary, our technique outperforms existing CPU-based joins
by up to two orders of magnitude and is competitive with state-
of-the-art GPU implementations.

1 INTRODUCTION
Connected mobility companies need to process vast amounts of
location data in near real-time to run their businesses. For exam-
ple, Uber needs to map locations of cars and passenger requests
(points) to prede�ned zones (polygonal regions) for allocation
and dynamic pricing purposes [40]. These polygonal regions are
typically largely disjoint (non-overlapping) and mostly static.
Points, on the other hand, are often not known a priori. Thus,
the problem is how to e�ciently �nd the polygons that contain
an incoming point.

Traditionally, such point-polygon joins [19] follow the �lter
and re�ne approach. In this two-phase evaluation strategy, the
�ltering phase typically uses an index (e.g., an R-tree) on the
minimum bounding rectangles (MBRs) of polygons and probes
the index for each point to obtain a list of candidate join pairs.
Then, in the re�nement phase, expensive point-in-polygon (PIP)
tests are performed to discard false matches.

We argue that the time has come to rethink this strategy: First,
main memory is not a scarce resource anymore and modern
machines o�er multiple terabytes of memory. Combined with
the city-centric model of geospatial applications (e.g., Uber), we
show that it is possible to maintain highly �ne-grained indexes
for entire cities (e.g., Uber’s operating zones) in main memory,
dramatically reducing the number of CPU-intensive PIP tests.
Second, geospatial positions, nowadays typically obtained by
smartphones or wearables, are inherently imprecise [41]. Thus,
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we argue that it is in many cases admissible to trade o� accuracy
for performance. Based on these two insights, we transform the
traditionally CPU-intensive problem of point-polygon joins into
one that is bound by memory access latencies.

In contrast to the classical �lter and re�ne approach, true hit
�ltering [9] identi�es actual join pairs already in the �ltering
phase, and thus partially avoids expensive re�nements. This
is achieved by using additional approximations (such as inner
rectangles [20]) to approximate the interior of polygons, so that
when a point falls into an interior approximation, it can be safely
deducted that the point is contained in the polygon.

Building on this seminal idea, we present an improved al-
gorithm that combines true hit �ltering with quadtrees [23] to
holistically index an entire set of polygons. This is in contrast to
existing implementations of true hit �ltering that approximate
polygons individually [15, 21] or use non-hierarchical (single-
resolution) grids [6, 39, 49]. In our approach, polygons are trans-
lated into a single set of multi-resolution grid cells that approx-
imates their boundary and interior areas. To support e�cient
queries, we store one-dimensional identi�ers of the cells in a new
in-memory radix tree (trie) named Adaptive Cell Trie (ACT). We
show that ACT is more query-e�cient than previous approaches
for indexing cell identi�ers (e.g., B-trees, like in [21]).

Another distinguishing feature of our approach is that it can
entirely avoid the expensive re�nement phase by re�ning cells in
the boundary areas until a user-de�ned precision is guaranteed.
Naturally, this comes at the cost of higher memory consumption
than traditional �lter and re�ne approaches. However, as stated
above, we argue that we can nowadays actually a�ord this higher
memory consumption in exchange for higher performance.

Our approach can also provide accurate results by performing
expensive PIP tests for points that are potential hits. To reduce
their number, we adapt (train) our index based on historical data
points to provide higher precision where it is actually needed. As
we show in our experiments, our accurate algorithm performs
very few PIP tests. Compared to a �lter based on the polygons’
MBRs, our index (trained with 1M historical points) reduces
the number of required PIP tests by >97% for a join between
NYC taxi pick-up locations and neighborhood polygons. This
algorithm can also be used when ACT cannot guarantee the
desired precision given a certain memory budget.

In summary, we make the following contributions:

• An algorithm that computes quadtree-based grid approxima-
tions for sets of polygons with precision guarantees

• A radix tree data structure (ACT) that is optimized for indexing
cell identi�ers: for a join of NYC’s yellow taxi data with NYC’s
neighborhoods, we achieve a throughput of >50M points/s
per CPU core under a <4m precision bound
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Figure 1: Quadtree-based cell decomposition and Hilbert
curve-based enumeration.

• An evaluation of ACT in contrast to more traditional data
structures, such as B-trees

• An accurate algorithm that trains the index structure based on
historical data points

• An experimental comparison against state-of-the-art GPU-
based point-polygon joins
In the remainder of this paper, we �rst give some background

about the building blocks of our approach in Section 2. Section 3
describes our approach and Section 4 presents the evaluation
with real-world and synthetic data. Finally, we summarize related
work in Section 5 before concluding in Section 6.

2 BACKGROUND
Location Discretization. Our approach relies on a quadtree-
based (hierarchical) decomposition of space (the surface of the
Earth in this case). This decomposition is static and thus data
independent. We enumerate the quadtree cells using a space-
�lling curve (e.g., the Hilbert or the Z curve) to index them in a
one-dimensional data structure. Our approach does not depend
on a concrete space-�lling curve. For our indexing strategy to
work, the cell enumeration must only ful�ll the property that
child cells share a common pre�x with their parent cell.

Figure 1 shows the hierarchical decomposition of two cells at
levels i and i + 1 and the corresponding bitwise representations
that encode the cells’ positions along the Hilbert curve. Each
cell consists of four sub cells, which it completely covers. Child
cells share a common pre�x with their parent cell, allowing us to
compute contains relationships using e�cient bitwise operations.
In our implementation, we use the Google S2 library [32] for
mapping latitude/longitude coordinates to 64-bit cell identi�ers,
which we call cell ids in the following. A cell id encodes up to 30
levels with two bits per level.
Polygon Approximations. To obtain �ne-grained polygonal
approximations, we need a method that maps polygons to sets of
quadtree cells (possibly at di�erent levels). In particular, our algo-
rithms take as input approximations of the boundary and interior
areas of single polygons. In our implementation, we use the S2 li-
brary to obtain these individual polygon approximations. Figure 2
illustrates a covering (in blue) and an interior covering (in green)
of a polygon. A point contained in a covering cell is either within
or outside of the polygon while points that match interior cells
are known to be within the polygon (true hits). The cell marked
with 1 is one of the largest covering cells and only minimally in-
tersects the polygon. Any point contained in this cell has at most
a distance of

p
2⇤� (with � being the side length of the cell) to the

polygon. To allow for an e�cient search, S2 stores the cell ids of
a covering in a sorted vector. Besides sorting the cell id vector, it
allows for the covering to be normalized. A normalized covering

contains neither con�icting nor duplicate cells. Two cells are con-
�icting when one cell contains the other. Only when the covering
is normalized can cell containment checks be e�ciently imple-
mented using a binary search on the sorted vector (O(logn)).

1

Figure 2: A covering (blue
cells) and an interior cov-
ering (green cells) of an in-
dividual polygon.

While binary search on a sorted
vector is a good strategy for
querying small collections of
cells (e.g., the covering cells of
a single polygon), it is not the
most e�cient way to search
larger collections (e.g., cover-
ings of multiple polygons). In
this work, we store large cell
collections in ACT, a query-
e�cient radix tree, and evalu-
ate its performance compared
to alternative physical represen-
tations (including a sorted vec-
tor and a B-tree).
PIP Test. A point-in-polygon (PIP) test determines whether a
point lies within a polygon. Typically such a test is performed
using complex geometric operations, such as the ray-tracing algo-
rithm [17], which involves drawing a line from the query point to
a point that is known to be outside of the polygon and counting
the number of edges that the line crosses. If the line crosses an
odd number of edges, the query point lies within the polygon. The
runtime complexity of this algorithm isO(n), n being the number
of edges. While there are many conceptual optimizations to the
PIP test, this operation remains computationally expensive since
it processes real numbers (e.g., latitude/longitude coordinates)
and thus involves �oating point arithmetics.

3 GEOSPATIAL JOIN APPROACH
In this work, we target the problem of mapping points to static,
largely disjoint polygons. We show how to accelerate such joins
by computing �ne-grained cell-based approximations of sets of
polygons and maintaining them in a query-e�cient in-memory
radix tree, which enables e�cient cell lookups and signi�cantly
reduces (or even eliminates) expensive geometric tests.

In contrast to techniques that �rst reduce the number of can-
didate polygons using an index, e.g., an R-tree on the polygons’
MBRs, and then re�ne candidates using geometric operations,
our approach leverages true hit �ltering [9] and identi�es most
or even all join pairs in the �lter phase. On a high level, our
approach �rst computes cell-based approximations of all poly-
gons, called coverings and interior coverings, and merges them
to form a super covering. Then, it stores these approximations in a
specialized in-memory radix tree (named ACT) which allows for
e�cient lookups. Finally, ACT is probed for every point to obtain
a list of true and candidate point-polygon pairs. The candidate
pairs are either re�ned by performing geometric computations to
obtain an accurate result, or deemed to be part of the join result
when small approximation errors can be tolerated.

The following provides more information about our indexing
technique and the two geospatial join algorithms that are based
on it: the approximate one that completely avoids expensive
PIP tests while still guaranteeing a user-de�ned precision, and
the exact one that reduces expensive computations by adapting
to the expected point distribution. These algorithms allow us
to trade memory consumption with precision (approximate ap-
proach) and performance (exact approach). Thus, they both favor
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(a) Covering (b) Covering (c) Combined cov.

Figure 3: A combined covering may be less selective than
two individual coverings. The arrows indicate that the
cells will be expanded.

modern hardware with large main memory capacities and high
memory bandwidths. In summary, the key contribution of our
indexing strategy is the novel combination of the super cover-
ing that approximates the polygons precisely, and the radix tree
data structure that allows these approximations to be queried
e�ciently. With this design, we revisit the concept of true hit
�ltering in the context of modern hardware.

3.1 Adaptive Cell Trie (ACT) Indexing
3.1.1 Super Covering Computation. The super covering con-

sists of a set ofmulti-resolution grid cells. All grid cells are disjoint
in the sense that each geographical point is covered by at most
one cell, even if two (or more) polygons overlap. A single cell of
the super covering can therefore be associated with multiple poly-
gons. The super covering maintains a list of polygon references
for each individual cell. A polygon reference has two attributes:
polygon id The identi�er of the polygon that this cell refer-

ences.
interior �ag Whether the cell is an interior or a boundary cell

of the polygon.
The precision of the super covering determines the selectivity

of the index. When combining the approximations of the individ-
ual polygons, we need to take special care of con�icting cells1 to
not lose precision. However, this is challenging for two reasons.
First, con�icts may occur between the cells of a covering of a
given polygon and the cells of its interior covering. The interior
cells always overlap some (if not all) covering cells. Second, when
di�erent polygons overlap or are close to each other, con�icts
may occur between the cells of their coverings.

One approach for retaining the precision would be to not
resolve such con�icts at all and maintain all con�icting cells.
However, this would have the consequence that a query point
could match with more than one cell, which would a�ect lookup
performance. In a radix tree, this would mean that we would
need to keep searching lower levels once we found a match at a
higher level.

Ensuring that cells are non-overlapping results not only in
higher lookup performance, but also in a more compact radix
tree. The reason is that for a given entry in a tree node, we only
need to di�erentiate between a pointer (to a child node) and a
value. With overlapping cells, we would have to store a pointer
and a value.

There are two obvious solutions for resolving a con�ict be-
tween two cells c1 and c2, where c1 is an ancestor of c2 in the
quadtree (c1 contains c2). One is to replace c2 with c1, which
leads to a precision loss as shown in Figure 3. Figures 3a and 3b
1Recall that a con�ict between two cells exists if one cell contains the other. We do
not consider duplicate cells as con�icting.

(a) c1 and c2 (b) Di�erence d (c) d and c2

Figure 4: Precision preserving con�ict resolution. c1 is
marked in blue, c2 in green, and the cells in d in purple.
Note that c1 contains c2.

show the coverings of two individual polygons. The red cells
have con�icts with cells of the other covering. Figure 3c shows
a combined covering, where the originally smaller cells are sub-
sumed by larger cells, causing a precision loss. The other solution
is to replace c1 with a set of smaller cells at the same level (i.e., of
the same size) as c2. While this retains the precision, it can sig-
ni�cantly increase the number of cells in the combined covering.

Without compromising on precision, we would like to reduce
the number of cells introduced. To solve this problem, instead
of storing both con�icting cells c1 and c2, we compute their
di�erence d and store c2 and d . This has the advantage that there
will not be any overlap between the indexed cells, and thus an
index lookup will return at most a single cell. The side e�ect is
that the total number of cells will increase since d consists of at
least three cells.

Figure 4 illustrates this precision preserving con�ict resolution.
Assume that c1 (blue) and c2 (green) are cells of two di�erent
coverings and that c1 contains c2. First, we compute d , which
consists of six cells. We then copy all polygon references of c1 to
d and c2 and omit c1. Note that the cell count is increased by �ve.
Overall, our approach retains the precision and the type (bound-
ary or interior) of the individual cells as well as the mappings of
cells to polygons.

Listing 1 outlines this algorithm. We iterate over all input cells
and try to insert them into the super covering.When a cell already
exists, this means that it is also part of another covering that
has already been processed. When two cells con�ict, this means
that either the current cell covers the other cell or vice versa.

Figure 5: A super cover-
ing of neighborhoods in
NYC’s Jamaica Bay.

These two cases may happen
when polygons overlap or are
close to each other, or when we
�rst insert the cells of the cov-
ering of a given polygon and
then the cells of its interior cov-
ering. To address these cases,
we apply the precision preserv-
ing con�ict resolution strategy
described above. As mentioned
earlier, this strategy increases
the total number of cells. How-
ever, a more precise index re-
duces the number of expensive
PIP tests and thus increases
overall performance.

Figure 5 shows a super covering of neighborhoods in NYC’s
Jamaica Bay. Boundary (former covering) and interior cells are
again marked in blue and green, respectively. Most of the area
shown is covered by either interior cells or by no cells at all. Only
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input:
a list of coverings coverings // one per polygon
a list of interior coverings interiors // one per polygon
output:
// a list of (cell, polygon references)
the super covering superCovering
procedure:
for (covering in coverings) {
for (cell in covering) {
if (superCovering already contains cell) {
add references of cell to existing cell
continue
}
if (cell conflicts with existing cell in superCovering) {
// cell is covered by existing cell or vice versa
// resolve conflict
c1 = ascendant cell // may be cell or existing cell
c2 = descendant cell // may be cell or existing cell
d = di�erence of c1 and c2
add references of c1 to d and c2
remove c1 from superCovering // only required if the existing cell
is the ascendant cell

add c2 and d to superCovering
continue
}
add {cell, {covering.polygonId, interior flag=false}} to superCovering
}
}
// ... same code for interior coverings (with interior flag=true)

Listing 1: Build precision preserving super covering.

in the unlikely event that a query point hits a blue (boundary)
cell, we may experience false positives (approximate approach)
or we will need to enter the re�nement phase (exact approach).

3.1.2 Data Structures. To store the super covering and enable
e�cient queries over it, we use two data structures: (i) a special-
ized radix tree (ACT) that indexes the cells of the super covering,
and (ii) a lookup table that maintains the (variable-length) poly-
gon references. Both data structures are designed for in-memory
processing and are optimized for lookup performance.
Adaptive Cell Trie. ACT is a specialization of a textbook radix tree
that indexes 64 bit cell ids. We call it adaptive for two reasons:
(i) it indexes cells of adaptive sizes (to guarantee user-de�ned
precision), and (ii) it can adapt to the expected point distribution.
All adaptation is performed at build time. Once ACT is built, it
is a static (immutable) data structure. We leave updates such
as adding new polygons to an existing ACT for future work.
However, we would like to point out that supporting updates is
straightforward: In the build phase, cells of individual polygons
are inserted one-by-one into ACT. The same procedure could
be used to add new polygons at runtime, with appropriate syn-
chronization between readers and writers. Code for removing
polygons would follow the same logic, with the only di�erence
being that we may want to (periodically) reorganize (i.e., com-
pact) the lookup table.

We refer to the cell ids stored in the radix tree as keys. Each
key denotes the path of a cell in the hierarchical grid. In the
following, we �rst outline why a radix tree, in general, is a good
choice for indexing quadtree cells, and we then explain how ACT
di�ers from a general-purpose radix tree.

The main reasons why we choose a radix tree to index a super
covering are (i) space e�ciency and (ii) support for e�cient pre�x

lookups. Compared to storing cell ids in a list, a radix tree avoids
redundantly storing common pre�xes, which reduces memory
consumption. Pre�x lookups, on the other hand, are required to
�nd matching cells: The query point, which is a cell id at the
most �ne-grained grid level, is used to search for cell ids within
the radix tree that share a common pre�x (i.e., cover the query
point). The runtime complexity of these lookups is inO(k)with k
being the key length, as opposed to theO(logn) of binary search
that could be used on a sorted list. In other words, the number
of node accesses in a radix tree is bounded by the maximum key
length kmax , which is 60 when 30 quadtree levels are used (which
is the case in our implementation). In practice, a lower kmax is
often su�cient. For example, kmax = 44 allows for indexing cells
up to level 22, which corresponds to a precision of less than 4m
(i.e., the distance between a point and a polygon in a false match
is at most 4m). A further advantage of the radix tree is that most
queries can be answered using the upper levels of the tree: larger
cells use fewer bits and are thus indexed closer to the root node.
In the likely event that a query point hits a larger cell, we can
complete the tree probe sooner.

We now discuss the design choices of ACT. The fanout f of the
radix tree controls space consumption and lookup performance. A
fanout of four means that we consume two bits at every tree level.
With that con�guration, our data structure matches the quadtree
scheme (each node has four children, cf. Figure 6 for an example).
While this would ease the implementation, it would require up
to 30 nodes to be accessed per lookup. With a higher fanout, we
can reduce this number. To maximize lookup performance, ACT
uses a default fanout of 256 (= 8 bits). Thus, each level in ACT
corresponds to four levels in the quadtree (each quadtree level
is encoded with two bits). Let � be the cell level granularity of
ACT (with f = 256, � = 4). While a fanout of 256 may result in
sparsely occupied trie nodes, it allows for e�cient lookups as
it reduces the height of the trie to kmax/�. With f = 256, the
maximum number of node accesses is d60/log2(256)e = 8 for 30
quadtree levels.

Now we exploit a property of the hierarchical cells that we
index: We extend their cell ids (keys) such that the key length
matches the granularity of ACT. This process involves replacing
a cell that we want to index with all its descendant cells at the
next supported granularity level, and replicating the payload of
the original cell to the smaller cells. In other words, if a cell does
not match the tree granularity, we recursively split it into smaller
cells that cover the same area. The following holds for indexed
keys (cells):

level(cell) mod � = 0

Each cell c for which this equation does not hold is decomposed
into a set of smaller cells C , with |C | = 4��(le�el (c)mod �). This
is possible since points are represented by cells at the most �ne-
grained grid level and use the maximum key length. Therefore,
for a query point, it does notmake a di�erencewhether it matches
with the originally inserted cell or with one of its descendant cells.
This insight greatly simpli�es the memory layout of a tree node
and saves many CPU instructions: (i) we do not need to store the
level with a cell, since all cells indexed in a tree node will have
the same level, and (ii) a lookup in a node (an array) becomes
a single o�set access. Without this arti�cial key extension, we
would need to perform multiple accesses per node to traverse all
cell levels indexed in that node.

Figure 6 illustrates ACT indexing three polygons. While the
example shows ACT with a fanout of four, by default we actually
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use a fanout of 256 to reduce the tree height. Every node thus
consists of a �xed-sized array of 256 entries of 8 byte pointers.
Entries that neither contain a child pointer nor a value point to a
sentinel node indicating a false hit (no hit).

Values (i.e., polygon references) can be found in any level of
the tree. This is because the indexed keys (64 bit cell ids in our
case) typically use only a small fraction of the 64 bits with the
remaining bits all set to zero. Larger cells that use fewer bits are
indexed higher up in the tree, possibly even in the root node. In
our example, polygon a is indexed by a cell in the upper level,
while polygons b and c are indexed by cells in the lower level. In-
stead of storing values in separate nodes (e.g., adjacent to the tree
nodes), we use combined pointer/value slots like in [25]. This de-
sign consumes less space and avoids an unnecessary indirection.
Here, we exploit another property of the cell ids that we index:
Cells in the super covering are disjoint, therefore a tree lookup
will return at most one result. Due to this property, we never
need to store a pointer and a value in an array entry at the same
time. Using pointer tagging, we di�erentiate between pointers
and values. We therefore refer to both pointers and values as
tagged entries.

As stated before, each cell is associated with a set of polygon
references. Thus, each value stored in the tree has to identify
such a set. The canonical design would be to make each cell
point to an entry in a lookup table that stores the references.
However, at least in the case of largely disjoint polygons, cells
mostly reference only one or two polygons. Therefore, to elimi-
nate additional indirections, when there are no more than two
polygon references, we store these references directly in the tree.
A tagged entry can thus be:

• An 8 byte pointer to a child or the sentinel node (recall that a
pointer to the sentinel node indicates a false hit)

• An inlined polygon reference (a 31 bit value)
• Two inlined polygon references (two 31 bit values)
• An o�set (a 31 bit value) into a lookup table indicating that
there are at least three polygon references

We use the two least signi�cant bits of the 8 byte pointer
to di�erentiate between these four possibilities. For an inlined
polygon reference, we di�erentiate between a true hit and a
candidate hit using the least signi�cant bit of the 31 bit value.
Thus, we can e�ectively only store 30 bit polygon ids (i.e., can
index up to 230 polygons).

We have experimented with path compression, but have found
that storing common pre�xes with inner and leaf nodes only
barely reduces the number of nodes. Thus, the additional cache
miss to access the pre�x does not pay o�. We therefore only use
a common pre�x at the root level.

We have also considered introducing adaptive node sizes, as
proposed by the adaptive radix tree (ART) [25]. However, experi-
ments have shown that introducing a second (compressed) node
type with four children (Node4 in ART) (i) saves only a negligible
amount of space for our workload and (ii) has a signi�cant per-
formance impact (due to the additional instructions and branch
misses for dispatching between node types [25]). Also, lookups
in compressed node types are more expensive.
Lookup Table.When a cell references more than two polygons,
the tree contains an o�set into a lookup table. Since cells often
reference the same set of polygons, we only store unique polygon
reference lists. The reference lists are split into two parts, a list
with true hits and a list with candidate hits. Both lists contain

Figure 6: Adaptive Cell Trie indexing three polygons a, b,
and c. Here, ACTuses two bits per level. In practice, we use
up to eight bits (a fanout of 255) to reduce the tree height.
Note that the �gure only shows the cell rasterization for
the part of the map that corresponds to the radix tree.

input:
root node of ACT rootNode
the cell id of the query point cellId
output:
tagged entry taggedEntry
procedure:
if (common prefix of rootNode does not match)
return invalid entry
level = 0
currNode = rootNode
bits = getBits(cellId, level++) // extract relevant bits
// traverse the tree until we either hit the sentinel node or found a

value
while (taggedEntry = currNode.getEntry(bits) is a pointer) {
if (taggedEntry points to the sentinel node)
return false hit
currNode = taggedEntry
bits = getBits(cellId, level++)
}

Listing 2: Probe Adaptive Cell Trie.

polygon ids. The lookup table is encoded as a single 32 bit un-
signed integer array. The o�sets stored in the tree are simply
o�sets into that array. Each encoded entry contains the number
of true hits followed by the true hits, the number of candidate
hits, and the candidate hits.

3.1.3 Index Probing. AnACT lookup returns, at most, one cell
mapping to a set of polygon references. Listing 2 shows the probe
algorithm. While traversing the radix tree does not involve any
key comparison, a comparison is performed to check whether the
returned tagged entry contains a payload. For that, we need to
di�erentiate between (i) one polygon reference, (ii) two polygon
references, and (iii) an o�set. In the �rst case, we check whether
the polygon reference is invalid, which indicates a false hit. Oth-
erwise, we extract the interior �ag (the least signi�cant bit of the
31 bit payload) and the polygon id and return the reference. In
the second case, we extract and return both references. Only in
the third case, we need to access the lookup table to retrieve the
polygon references.

3.2 Approximate Join with Precision Bound
The complete point-polygon join algorithm is shown in Listing 3.
It is essentially an index nested loop join, using our novel ACT
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input:
points points // lat/lng coordinates and cell ids
polygons polygons // lat/lng coordinates of vertices
root node rootNode
lookup table lookupTable
output:
list of join pairs pairs // point/polygon pairs
procedure:
for (point in points) {
taggedEntry = probeAdaptiveCellTrie(rootNode, point.cellId) //

cf., Listing 2
if (taggedEntry is invalid)
continue
references = getPolygonReferences(lookupTable, taggedEntry) //

returns a list of polygon references
for (reference in references) {
polygonId = reference.polygonId
polygon = polygons[polygonId]
if (reference is true hit) {
add {point, polygon} to pairs
} else { // candidate hit

#ifdef __APPROX
// treat candidate hit as true hit
add {point, polygon} to pairs

#else
// EXACT: enter refinement phase
if (polygonCoversPoint(polygon, point)) // PIP test
add {point, polygon} to pairs

#endif
} } }

Listing 3: The join algorithm.

index that makes the point-cell containment tests very e�cient.
For a given point, we retrieve the cell that contains it (if such a
cell exists) and go over all references of this cell. When approx-
imate results are su�cient, we omit the expensive re�nement
phase, simply treat all points contained in boundary cells as (ap-
proximate) hits, and immediately output the join pairs. In doing
so, we introduce false positives. However, the distance of false
positives from the polygon is bounded by the diagonal of the
largest boundary cell: Any point contained in that cell has at
most a distance of

p
2 ⇤ � (with � being the side length of the cell)

to the polygon. In order to control this distance, our approximate
algorithm exposes a precision bound as a parameter to the user.
Based on this bound, we compute the minimum cell level for
boundary cells. For example, to guarantee a 4m precision, the
largest boundary cell can at most have a diagonal of 4m, which
corresponds to a minimum cell level of 22 in our implementa-
tion (i.e., cell level 21 would be too coarse-grained). We replace
all boundary cells in the super covering with their descendant
cells at the required level. For each of these descendant cells,
we determine whether they intersect, are fully contained in, or
do not intersect polygons at all, and update ACT accordingly:
We remove the original cell co from ACT and insert only those
descendant cells that intersect or are fully contained in polygons.
The new cells may reuse the lookup table entry of co or create
their own in the event that they only map to a subset of co ’s
polygons.

Note that [39] makes use of a similar distance-based precision
bound, however, uses a single-resolution grid. When it is not
possible to maintain a su�ciently �ne-grained index within a
certain memory budget, the user can fall back on our accurate
approach, in which we train the index with historical data points.

3.3 Accurate Join
When applications require accurate results, or when we cannot
build an index that satis�es a user-de�ned precision without
exceeding a memory budget, we use an approach that may enter
the expensive re�nement phase (cf. Listing 2). To minimize the
number of (expensive) PIP tests, we increase the precision of the
index by adapting it to the expected point distribution. Since we
make use of true hit �ltering, a �ner-grained index allows us to
identify more join partners during the �lter phase.

3.3.1 Index Training. To minimize the likelihood of PIP tests,
we train the index to adapt to the expected distribution of query
points. We train ACT with historical data points (e.g., from a
previous year) which has the e�ect that popular areas that expect
more hits are approximated using a more �ne-grained grid than
less popular areas. This training process replaces expensive cells
with up to four of their child cells. We de�ne expensive cells
as cells that map to polygon reference sets with at least one
candidate hit. When we hit such a cell during the join, we need
to perform expensive PIP tests.

Speci�cally, the training works as follows: When a training
point hits an expensive cell, for each of its four child cells we
check whether they intersect, are fully contained in, or do not
intersect the referenced polygons at all, and update ACT accord-
ingly. The cell replacement procedure is the same as for the
approximate algorithm (i.e., remove original cell, insert descen-
dant cells, and update lookup table, cf. Section 3.2) with the only
di�erence being that we always replace an expensive cell with its
direct children one level below.We do not replace a cell with even
smaller cells to be more robust against outliers. In practice, we
would stop re�ning the index once a user-de�ned memory bud-
get is exhausted. In this work, we focus on training the index in
a dedicated training phase. Training the index at runtime would
introduce additional concurrency and bu�er management issues
that we leave for future work. We show the e�ect of training the
index in Section 4.2.

3.4 Implementation Details
Join Predicate. Our current implementation follows the seman-
tics of the ST_Covers join predicate (cf. PostGIS [30]). ST_Covers
evaluates whether one geospatial object (e.g., a polygon) covers
another (e.g., a point).
Individual Polygon Coverings. We compute the individual
polygon coverings using the S2 library. Note that our approach
does not depend on S2 and, in fact, workswith any other quadtree-
based hierarchical grid inwhich each (implicit) quadtree node [16]
corresponds to a geographical area (space partitioning). For our
approach to work, each quadtree node needs to be uniquely iden-
ti�able with a bit sequence that represents the path to the given
node starting from the root. Thereby, any (consistent) enumera-
tion scheme (e.g., the Hilbert space-�lling curve used by S2 or the
Z curve used by Roth [31]) of the four quadrants is valid. To store
these encoded node identi�ers in a trie, we require the identi�ers
of child nodes to share a common pre�x with their parent node.
Face Nodes. Since our implementation uses S2, which projects
points on Earth onto a surrounding cube, we need to maintain
up to six radix trees (one for each face). Using the �rst three bits
of the query cell id, we select the appropriate radix tree.
Index Probing. The probe (�lter) phase is the performance-
critical part of our approach. We therefore parallelize this phase
to accelerate lookups in the radix tree. Individual processing
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threads fetch batches of 16 tuples at a time and synchronize
using an atomic counter.
PIP Test. In the re�nement phase, we use S2’s PIP test, which
implements the ray tracing algorithm (cf. [29] for performance
numbers).

4 EXPERIMENTAL EVALUATION
In this section, we present a thorough experimental analysis of
our point-polygon join algorithms. We use taxi data from NYC,
which we join with di�erent polygonal regions of NYC, such
as neighborhoods. We also experiment with geo-tagged Twitter
data from di�erent cities. Besides these (skewed) real-world point
datasets, we experiment with (uniform) synthetic point data. We
focus our experiments on the probe phase of the join (probing
points against a pre-built polygon index). For completeness, we
also report build times.

Our evaluation is structured into three parts: First, we evaluate
the performance and space consumption of our approximate
algorithm with di�erent data structures, including ACT, a B-tree,
and a sorted vector. We demonstrate that for a city like NYC (with
its 289 neighborhoods), an approximate index with very high
precision (<4m precision bound) easily �ts into themainmemory
of a single machine and, in the case of ACT, allows for very high
probe performance (>50M points/s per CPU core). We think that
this is a good �t with the city-centricmodel ofmobility companies
(e.g., Uber, DriveNow [13]). We show that ACT outperforms
other physical representations by a large margin, while being
more space-e�cient in many cases. Second, we evaluate our
accurate algorithm and show that it bene�ts greatly from true hit
�ltering. We compare it against other �lter and re�ne approaches,
including an R-tree on the polygons’ MBRs, a geospatial index by
Google, and PostgreSQL (PostGIS). We demonstrate that the high
precision of our index can be further improved by training it with
historical data points. Third, we show that both our algorithms
are competitive with state-of-the-art GPU approaches.
Infrastructure. We use a server-class machine that is equipped
with two 14-core Intel Xeon E5-2680 v4 CPUs and 256GiB DDR4
RAM. All CPU-based approaches are implemented in C++ and
compiled with GCC version 5.4.0 with O3 and march=core-avx2
�ags. We conduct the experiments on a single socket to eliminate
NUMA e�ects. For the comparison against the GPU join algo-
rithms, we use these Amazon Web Services (AWS) instances [5]:

c5.4xlarge 16 vCPUs, USD 0.68/hour
g3s.xlarge NVIDIA Tesla M60 GPU, USD 0.75/hour

Datasets and Queries. We use 1.23 B points (pick-up locations)
from the NYC yellow taxi dataset (years 2009 to 2016), which is
publicly available in CSV format [38]. For each point, we load
its lat/lng coordinate and convert it to an S2Point [33] (which
represents a point on the unit sphere as a 3D vector of dou-
bles) and to an S2CellId (an 8 byte value, cf. Section 2) prior
to performing any experiments. We maintain one std::vector
of S2Points and another one storing the corresponding cell ids.
We join these points against the polygon datasets summarized in
Table 1 (top). All three polygon datasets cover approximately the
same area. While there are only �ve boroughs, their polygons
are signi�cantly more complex.

In addition, we use geo-tagged tweets collected from Twitter’s
live public feed over a period of �ve years. From these, origi-
nally over 2.29 B tweets spread across the entire US, we extract
four point datasets based on the MBRs of NYC, Boston (BOS),

Los Angeles (LA), and San Francisco (SF), consisting of 83.1M,
13.6M, 60.6M, and 9.57M points, respectively. We join these
points against the corresponding neighborhood polygons: NYC
(289), BOS (42), LA (160), and SF (117). Since we extract the points
using the MBR of the entire polygon dataset and not the indi-
vidual neighborhood polygons, there are points that do not join
with any polygon.

We also generate synthetic point datasets, uniformly distributed
within the MBR of the respective polygon dataset.

We focus our experimental evaluation on the probe phase
and simply count the number of points per polygon instead of
materializing the join result. To avoid any contention in the multi-
threaded experiments, we maintain thread-local counters that
we aggregate in the last step. Since we are focusing on the case of
static polygons, the reported throughput times re�ect the time to
compute the counts using an existing (pre-built) polygon index.
We report the time it takes to build the polygon index separately.
However, we would like to point out that we did not optimize
the build phase.
Polygon Approximations. Our default con�guration for com-
puting the individual polygon coverings is as follows: max cover-
ing cells = 128, max covering level = 30, max interior cells = 256,
and max interior level = 20.

4.1 Approximate Join
We �rst analyze the performance and space consumption of our
approximate algorithm. In all of the following experiments, we
�rst build super coverings (sets of cell/value pairs, cf. Section 3)
and then index them with di�erent data structures.
Super Covering Construction. Table 1 shows di�erent met-
rics of the super coverings for the three polygon datasets with
60m, 15m, and 4m precision. With each cell occupying 64 bits,
the largest super covering (census 4m, 39.8M cells) amounts to
304MiB of raw key data and another 304MiB for the values (64
bit tagged entries, cf. Section 3). Given that most cells reference
fewer than three polygons, most polygon references are inlined,
which keeps the lookup table small. While the computation of the
individual coverings is parallelized over the number of polygons,
the construction of the super covering is performed serially.
Data Structures. We essentially need to map cell ids (64 bit
integers) to tagged entries (64 bit values). A tagged entry either
contains up to two polygon references or an o�set into a lookup
table. The lookup table is the same among all data structures that
we evaluate. The data structure needs to support pre�x lookups:
given a 64 bit lookup key (the cell id of a query point), �nd
the cell in the super covering (recall that it only contains non-
overlapping cells) that shares a common pre�x with the lookup
key (if such a cell exists). We analyze ACT with three di�erent
fanouts: 2, 4, and 8 bits per radix level, which corresponds to 1,
2, and 4 quadtree levels, respectively. Recall that one quadtree
level is encoded with two bits. We therefore refer to these three
variants as ACT1, ACT2, and ACT4. As competitors we use a B-
tree implementation by Google [11] (GBT) and a binary search on
a sorted vector implemented with std::lower_bound (LB). For
GBT, we use a (target) node size of 256 bytes, which turned out
to be the most query-e�cient con�guration. The vector stores
pairs of cell ids and tagged entries. We have also experimented
with the STX B+-tree [36] but do not include it in this section as
its lookup performance is very similar to that of GBT.

The performance of our approximate algorithm is dominated
by the costs of the ACT node accesses and the aggregation (count).
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Table 1: Metrics of the NYC polygon datasets and of three super coverings with various precisions.

polygons (# polygons / avg. # vertices) boroughs (5 / 662) neighborhoods (289 / 29.6) census (39,184 / 12.5)

precision [m] 60 15 4 60 15 4 60 15 4

# cells [M] 0.09 1.32 20.9 0.16 0.98 14.0 8.50 8.97 39.8
lookup table [MiB] 0.00 0.00 0.00 0.01 0.01 0.01 1.33 1.33 1.41
build individual coverings [s] 0.11 0.98 16.0 0.07 0.19 1.54 0.96 1.01 3.08
build super covering [s] 0.10 0.94 15.2 0.17 0.81 10.5 11.6 11.8 37.7

Table 2: Metrics of the di�erent data structures (4m precision).

super cov. boroughs (20.9M cells) neighborhoods (14.0M cells) census (39.8M cells)
index ACT1 ACT2 ACT4 GBT LB ACT1 ACT2 ACT4 GBT LB ACT1 ACT2 ACT4 GBT LB

size [MiB] 328 198 173 359 319 224 138 143 240 214 624 421 1234 684 608
build [s] 2.11 1.46 1.06 1.39 - 1.36 0.98 0.69 0.85 - 4.00 3.11 2.80 2.85 -
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Figure 7: Throughput and scalability of our approximate algorithm (taxi dataset). Left: Single-threaded execution with
di�erent data structures (4m precision). Middle: Single-threaded execution with di�erent precisions and data structures
(neighborhood polygons). Right: Multi-threaded execution (neighborhood polygons, 4m precision).

To better understand the results, we therefore �rst analyze the
space consumption of ACT and compare it with GBT and the
sorted vector. Table 2 shows size and build time (single threaded)
of the di�erent data structures on the super coverings introduced
above (4m precision only). In many cases, ACT consumes less
space than the sorted vector (LB). Due to the high density of
the cell ids, ACT is more space-e�cient with higher fanouts,
except for census where ACT4 consumes the most space: Like
for all datasets, ACT4 has fewer (but larger) nodes than ACT1
and ACT2. However, in this case, its nodes are very sparsely
populated compared to those of ACT1 and ACT2. The reason is
that ACT4’s nodes cover too much space for the relatively small
census cells. To mitigate the size impact of sparse ACT nodes,
one can represent them with a more compact data structure [4].
All 4m indexes exceed the 35MiB L3 cache of our evaluation
machine. Note that there is no additional build time for LB, since
the super covering contains cell id/tagged entry pairs already
sorted by cell id.
Single-Threaded Throughput. For this experiment, we com-
pute a super covering with a 4m precision bound on the three
NYC polygon datasets and store it in the di�erent data structures
introduced above. We then join the full taxi dataset (all 1.23 B
points) against each of these indexes and report the throughput
in Mpoints/s (cf. Figure 7 (left)).

ACT clearly dominates the B-tree and the binary search on
the sorted vector, especially in its highest fanout con�guration
(ACT4). A higher fanout means that we consume more bits of the
lookup key per tree level and thus require fewer node accesses
(i.e., need to traverse fewer levels) to �nd a key (an indexed cell).
With ACT4 for example, we consume 8 bits per tree level and

Table 3: Speedups of lookups in smaller (more coarse-
grained) over larger (more �ne-grained) polygon datasets
for di�erent data structures (b = boroughs, n = neighbor-
hoods, c = census).

b over n b over c n over c

ACT1 2.63⇥ 8.63⇥ 3.28⇥
ACT2 2.00⇥ 5.33⇥ 2.66⇥
ACT4 2.36⇥ 7.29⇥ 3.08⇥
GBT 2.05⇥ 3.51⇥ 1.71⇥
LB 1.83⇥ 2.63⇥ 1.44⇥

thus need at most 64/8 = 8 node accesses. Since we reduce the
tree height further by storing a common pre�x at the root level
(cf. Section 3), ACT requires even fewer node accesses (e.g., at
most �ve with 4m precision).

Another insight is that ACT bene�ts the most from the larger
(coarser-grained) cells in the smaller polygon datasets as shown
in Table 3. Going from the most �ne-grained census dataset
(39,184 polygons) to the most coarse-grained boroughs dataset (5
polygons), GBT’s lookup performance improves by 3.51⇥, while
ACT1’s increases by 8.63⇥. The reason for ACT’s large gain is
that larger cells are indexed higher up in the radix tree and are
thus found sooner. GBT, in contrast, does not bene�t from these
larger cells, which might as well be stored in the leaf nodes of the
B-tree. GBT’s performance gain comes from the smaller number
of cells used for indexing the boroughs dataset and the resulting
smaller B-tree (i.e., fewer branch and cache misses per point).

354



Table 4: Distribution of the tree traversal depth (ACT4
with 4m precision).

points boroughs neighborhoods census

uniform
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level

taxi
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level
0 1 2 3 4

0

1

tree level

Likewise, the binary search on the sorted vector (LB) is only
a�ected by the number of cells and not their granularity.
Di�erent Precisions.Next, we vary the precision of the indexed
super covering. We perform this experiment using the medium
size neighborhoods dataset. Figure 7 (middle) shows the through-
put numbers for the di�erent data structures. While GBT’s and
LB’s performance decreases by 33.4% and 39.4%, respectively
from 60m to 4m, ACT4’s performance is hardly a�ected (-5.73%)
by the larger number of cells of the more precise super covering.
Compared to the 60m covering, the more precise coverings con-
tain a larger number of small cells (in the boundary areas of the
polygons). Query points are unlikely to hit these cells in contrast
to the large (more coarse-grained) cells, which are indexed in the
upper (cached) ACT nodes (due to their shorter cell ids). ACT1
and ACT2 are more a�ected by the precision increase (-27.8%
and -17.9%, respectively). The reason is that the added small cells
have a stronger e�ect on the depths of these trees. While the
average node depth for ACT4 only increases from 2.83 to 2.97
(+4.95%) from 60m to 4m respectively, the same metric increases
from 10.8 to 14.6 (+35.2%) for ACT1. Although—as already stated
above—the new small cells are unlikely to be hit, they still cause
a performance hit for lower fanouts.

ACT4’s throughput is similar for 15m and 4m (-4.15%) because
its structure is identical for both precisions. In both cases, it has
70,786 nodes occupying 143MiB. The only di�erence is the nodes’
structure: Due to the more �ne-grained cell approximation, the
average node occupancy (measured in terms of occupied slots)
of ACT4 at tree level 3 decreases from 88.2% (60m) to 85.2%
(4m). The occupancies of all other levels are the same. This lower
occupancy for 4m saves some aggregations (for updating the
polygon hit counts), causing a slightly higher performance.

In summary, the impact of precision on query performance is
less signi�cant for ACT than for the other data structures.
Multi-Threaded Throughput. In this experiment, we study
the lookup performance of the di�erent data structures with
an increasing number of threads on the neighborhoods dataset
with a 4m precision bound. We use up to 28 threads, which
matches the number of hyperthreads of a single NUMA node of
our evaluation machine. Figure 7 (right) shows the speedups over
single-threaded execution. Up to 8 threads, all index structures
scale almost linearly (speedup of around 7⇥ in all cases). This is
what we would expect for immutable data structures.

The fact that an oversubscription of cores (hyperthreading)
has a positive performance impact suggests that the lookup is
bound by memory access latencies (having more threads than
physical cores can hide these latencies).
Synthetic Points. To show the general applicability of our ap-
proach, we also experiment with synthetic point data. We gen-
erate 100M points uniformly distributed within the MBR of the
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Figure 8: Single-threaded throughput of our approximate
algorithm (4m precision) with uniform point data.

respective (NYC) polygon dataset. Table 4 shows the probability
distribution of the number of search steps during the tree tra-
versal for the synthetic and the taxi point dataset. As expected,
the distribution for the uniform data is skewed towards the root.
That is because the larger cells (which are more likely to be hit)
are indexed closer to the root. The distribution for the taxi data
depends on the polygon dataset. For boroughs, most traversals
end at tree level 1, while for census, points mostly hit small cells
indexed in tree level 3.

Figure 8 shows the single-threaded throughput for the di�erent
data structures with the uniform point data. ACT achieves the
highest throughput, with ACT4 again being the most query-
e�cient con�guration. The absolute numbers, however, are lower
than for the (real-world) taxi data: ACT4’s throughput decreases
by 65.2%, 26.8%, and 3.11% for boroughs, neighborhoods, and
census, respectively.

The reason for this slowdown is simple: The synthetic point
data is uniformly distributed, which leads to more branch and
cache misses (cf. Table 5 for performance counters on neighbor-
hoods). In contrast, the real-world taxi data is highly clustered
with the majority of points located in Manhattan (>90%) and
around the airports. For boroughs (not shown in Table 5), ACT4
endures 0.79 and 0.01 branch misses per point for the synthetic
and the taxi points, respectively. This is the main cause of the
65.2% performance drop mentioned above.
Twitter Data.Next, we analyze the performance of our approach
on the four Twitter datasets and the corresponding neighbor-
hood polygons (cf. Figure 9). The numbers are similar across the
di�erent cities, with the highest throughput achieved for BOS
with its only 42 neighborhood polygons. Next comes SF followed
by LA and NYC, for which the throughput is very close to what
we obtained with the taxi data (cf. Figure 7 (left)). In fact, with
a 4m precision, ACT4 achieves a single-threaded throughput of
52.1M points/s, which is almost the same as the 53.6M points/s
on the taxi data. Similarly to the taxi points, the tweets are clus-
tered, with certain areas having more tweeting activity than
others. In contrast, with uniform point data, ACT4 only achieved
39.3M points/s. This con�rms that our approach bene�ts from
the skewed distribution of real-world data. For all four cities, the
numbers are (again) hardly a�ected by the precision.

4.2 Accurate Join
We now evaluate our accurate algorithm, which eliminates false
positives in an additional re�nement phase. We demonstrate that
our index bene�ts signi�cantly from true hit �ltering and that
index training with historical data can further improve its e�ect.
Competitors. We compare against the boost R-tree (1.6.0) [8]
on the polygons’ MBRs (RT), Google’s S2ShapeIndex [34] (SI),
and PostgreSQL 9.6.1 (PostGIS 2.3.1) [30] with a GiST index on
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Table 5: Performance counters per point (neighborhoods, 4m precision).

points uniform taxi
index ACT1 ACT2 ACT4 GBT LB ACT1 ACT2 ACT4 GBT LB

cycles 154 99.8 71.3 415 569 172 93.8 56.4 416 817
instructions 214 121 82.4 486 927 202 121 81.3 393 564
branch misses 1.06 1.04 0.88 5.32 8.38 0.96 0.83 0.48 7.06 10.8
cache misses 0.29 0.23 0.18 0.70 1.89 0.22 0.17 0.15 0.29 0.37
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Figure 9: Single-threaded throughput of our approximate
algorithm (Twitter datasets, polygon counts in brackets).

polygons (PG). Our algorithm and the R-tree both use the same
PIP test implementation (cf. Section 3.4). SI also uses that imple-
mentation, however, restricts the test to a subset of edges of the
polygon in question. This is achieved by using a hierarchical grid
approximation of polygons, and internally mapping grid cells (64
bit S2CellIds) to polygon edges using a B-tree. This hierarchical
grid approximation is much more coarse-grained than our super
covering, given its higher focus on build time than on query per-
formance (compared to our approach). SI allows the maximum
number of edges per cell to be con�gured, essentially controlling
the granularity of the employed grid approximation. We evaluate
SI with its default con�guration of 10 edges (SI10) and 1 edge
per cell (SI1). Note that SI1 is the most �ne-grained con�gura-
tion possible. SI also employs true hit �ltering (cf. Section 3) to
avoid PIP tests, but in a much less e�ective way than ours (due
to its coarser-grained grid). Furthermore, SI does not o�er an
approximate version. For the R-tree, we use the splitting strategy
rstar with at most 8 elements per node which performs best in
all workloads.
Taxi Data. For this experiment, we compute coarse-grained su-
per coverings that do not guarantee a certain precision, and
instead fall back on a re�nement phase for candidate hits. Here,
the resolution of a super covering is determined by our default
con�guration for computing individual polygon coverings intro-
duced earlier (cf. Section 4). Thus, these super coverings consist
of much fewer cells than those guaranteeing a certain precision.
For example, the approximation for the neighborhoods dataset
now only consists of 98,687 cells (ACT4 size: 25.9MiB) compared
to the 13.2M cells (ACT4 size: 143MiB) needed to guarantee a 4m
precision. For this dataset, SI1, SI10, and RT consume 1.20MiB,
0.23MiB, and 27.9 KiB, respectively.

Figure 10 shows the single-threaded throughputs for the accu-
rate join. ACT4 achieves the highest performance for all three
datasets. For the medium size neighborhoods dataset, it outper-
forms SI1 by 6.96⇥, followed by SI10, which is only 7.41% slower
than SI1. For census, ACT4 still outperforms SI1 by 5.79⇥. RT
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Figure 10: Single-threaded throughput of our accurate
algorithm (with di�erent ACT fanouts) compared to
S2ShapeIndex (with 1 and 10 edges per cell) and theR-tree.

has the lowest numbers with 0.21, 1.77, and 0.79M points/s for
boroughs, neighborhoods, and census, respectively. The reason
for its slow performance for boroughs is as follows: The com-
plexity of each PIP test (ray-tracing algorithm) is linear with the
size (number of edges) of the polygon. Since the boroughs are
complex polygons with many edges, the PIP tests in the re�ne-
ment phase are very expensive. Here, our algorithm shines since
it can identify most join partners in the �lter phase and only
enters the re�nement phase for 0.1% of the points. As a point
of reference, PG achieves 0.39, 1.09, and 0.69M points/s for bor-
oughs, neighborhoods, and census, respectively (because we use
all hyperthreads on our evaluation machine, PG’s numbers are
not directly comparable and are excluded from the plot). Similar
to RT, PG is a�ected by the complex boroughs polygons.
Index Training. As readers may have noticed, there is a large
performance gap between our approximate and our accurate
algorithm. For example, ACT4 (accurate) is 75.3% slower than
its approximate counterpart (with 4m precision) on the taxi
data/neighborhoods join. The reason is the expensive PIP tests
needed to compute an accurate result.

We now show how to narrow this performance gap. The idea
is to reduce the likelihood for PIP tests by training the index with
historical data points (cf. Section 3.3.1). In other words, we in-
crease the precision of the index by making it more �ne-grained
in areas where we expect more points. One e�ect this has is that
the size of the area covered by (expensive) boundary cells will
decrease. We train the index with taxi points sampled from the
year of 2009 and only use the points from 2010 to 2016 for the
join. Table 6 shows the performance impact. With 100 K training
points, ACT4’s performance improves by 1.56⇥ for neighbor-
hoods and increases further to 2.18⇥ with 1M points (due to a
84.0% reduction in the number of PIP tests). The size of ACT4 only
increases from 25.9MiB (untrained) to 28.0, 34.8, and 44.3MiB
when trained with 100K, 500 K, and 1M historical data points,
respectively. In absolute terms, ACT4 trained with 1M points
achieves a throughput of 29.1M points/s for neighborhoods and
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Table 6: Speedups of single-threaded lookups when train-
ing ACT4 with an increasing number of historical data
points (over untrained ACT4).

no. of train. points boroughs neighborhoods census

100 K 1.25⇥ 1.56⇥ 1.16⇥
500 K 1.40⇥ 2.00⇥ 1.40⇥
1M 1.44⇥ 2.18⇥ 1.53⇥

Table 7: E�ect of training the index with 1M historical
data points (STH = solely true hits).

metric boroughs neighborhoods census

STH (%) 99.9 ! 99.9 87.2! 97.7 72.2! 88.7

thus narrows the performance gap to its approximate counter-
part (with 4m precision) from 75.3% to 45.7% while consuming
68.9% less space. This shows that a trained accurate index is a
good alternative to our approximate indexes when main memory
is sparse. Table 7 shows the e�ect of true hit �ltering when
training the index with 1M training points. The metric solely
true hits (STH) indicates the percentage of points that skipped
the expensive re�nement phase, which is clearly above 70% in
all cases (even without training). Training the index signi�cantly
improves STH for neighborhoods and census.

4.3 Comparison with GPU Algorithms
Finally, we compare our approximate and accurate (untrained
ACT) algorithms against state-of-the-art GPU counterparts [39].
The GPU approaches leverage the graphics rendering pipeline,
and in particular the rasterization operation, which converts a
polygon into a collection of (equi-sized) pixels. Similar to our ap-
proach, the GPU join also comes in two variants: Bounded Raster
Join (BRJ), which guarantees a user-de�ned precision by appro-
priately scaling the rendering resolution, and Accurate Raster
Join (ARJ), which performs PIP tests for points falling on the
pixels forming the boundaries of the polygons. To enable a fair
comparison, we do not consider any preprocessing times on the
polygons (such as triangulation time). Note that the preprocess-
ing time for the GPU join is minimal. In fact, it is designed for
computing the join on-the-�y without a priori knowledge of the
polygonal regions.

We now compare the throughput of both approaches on two
similarly priced AWS machines (cf. Infrastructure in Section 4).
Figure 11 shows the results of joining 612M taxi rides with the
NYC polygon datasets. While our approximate algorithm is again
hardly a�ected by the precision (15m vs. 4m), BRJ takes a signi�-
cant performance drop. The reason for BRJ’s slowdown is simple:
Once the required resolution is higher than what is natively sup-
ported by the GPU, it needs to split the scene and perform more
rendering passes. This is essentially related to the fact that BRJ
relies on a uniform grid. On the contrary, BRJ is barely a�ected
by the polygon datasets, while our approximate algorithm is. The
reason is again related to the granularity of the grid: With the
more �ne-grained census dataset, we need to traverse more tree
nodes (as the cells that approximate the polygons are smaller),
while the rendering resolution in BRJ depends only on the size of
the bounding box of the polygon dataset and the precision. With
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Figure 11: Throughput of ACT4 (16 threads) compared to
the two GPU algorithms on AWS (GPU = Bounded Raster
Join for 15m and 4m and Accurate Raster Join for exact).

exact results, our approach outperforms ARJ for boroughs, while
ARJ takes the crown for neighborhoods and census.

5 RELATEDWORK
Prior Publications. In [24], we describe a novel approach to
reduce control �ow divergence on AVX-512 platforms to further
increase ACT’s lookup performance. Note that [24] is based on
an earlier (4-page) version of this work [22].
Spatial Join Techniques. The point-polygon join is one of the
core operations in spatial databases, and, a large body of related
work on algorithmic techniques [19] is available accordingly.

Naturally, we are not the �rst to index polygons using raster
approximations. Early on, Orenstein [27] proposed decompos-
ing single polygons into multiple cells. Later, Brinkho� et al. [9]
proposed true hit �ltering in the form of maximum enclosed rect-
angles and circles, allowing the re�nement phase to be skipped in
many cases. Zimbrao et al. [49] followed up on this approach by
using raster approximations in the form of uniform grids, thereby
improving selectivity. Kothuri et al. [20] recursively divide the
MBR of a polygon into four cells until a certain granularity is
reached, identify interior cells, and index them in an R-tree to
skip re�nement checks. The primary goal was to minimize I/O, an
important performance factor for disk-based systems. In contrast
to these early works on true hit �ltering and also to the recent
proposal by Tzirita Zacharatou et al. [39], we use a quadtree-
based (multi-resolution) grid that can be very coarse-grained in
interior and very �ne-grained in boundary areas.

Research has, however, also been performed on true hit �lter-
ing with quadtree-based rasterizations, including work in Ora-
cle Spatial [21] and Microsoft SQL Server [15]. In both of these
works, individual polygons are approximated using a set of multi-
resolution grid cells. These grid cells are enumerated using one-
dimensional cell identi�ers and stored in a B-tree. In contrast, we
holistically approximate and index an entire set of polygons and
store these (in our case duplicate-free) cell identi�ers in a novel
radix tree (ACT), which is more query-e�cient than a B-tree. Ad-
ditionally, these existing approaches neither o�er an approximate
mode nor allow the accurate index to be trained with historical
data points to improve query performance.

To decrease the probability of false matches, [35] improves
the precision of MBRs by clipping away empty space that is
concentrated around the MBR corners. In contrast to our work,
[35] uses the classical �lter and re�ne evaluation strategy.

Related to our approximate algorithm is work by Azevedo et
al. [7] that provides precision estimates for approximate polygon-
polygon joins using a less space-e�cient single-resolution grid.
Tzirita Zacharatou et al. [39] propose a similar precision bound
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to ours but also use a single-resolution grid (cf. Section 4.3 for a
comparison).

The PH-tree [47] is another example of a trie data structure
that indexesmulti-dimensional data. In contrast to ACT, it only in-
dexes points, not higher-level grid cells. Winter et al. [43] propose
a query-e�cient storage layout for point data that automatically
adapts to polygonal queries. Along the same lines, Vorona et
al. [42] train a model to approximately answer spatial aggrega-
tion queries.
Systems. Several database systems support geospatial joins. Post-
GIS [30], a geospatial extension to PostgreSQL [1], uses an R-tree
implemented on top of GiST [18] for indexing geospatial objects.
In recent years, various spatial data management systems based
on Hadoop [3, 14] and Spark [26, 37, 44, 46] have emerged. [28]
provides a comprehensive analysis of these modern spatial ana-
lytics systems by a thorough experimental evaluation. In contrast
to our work, most of these systems rely on o�ine partitioning of
the data points.
Modern Hardware. Most work on using modern hardware for
geospatial joins focuses on GPU o�oading [2, 12, 39, 45, 48] while
[10] proposes a GPU-accelerated end-to-end spatial system.

6 CONCLUSIONS
We have presented two point-polygon join algorithms that use a
multi-resolution grid indexed in a query-e�cient radix tree. We
have transformed a traditionally compute-intensive problem into
a memory-intensive one. We have shown that it is possible to
re�ne the index up to a user-de�ned precision and identify all
join partners in the �lter phase. We have demonstrated that the
accurate version of our algorithm can adapt to the expected point
distribution. We have also shown that our approach outperforms
existing CPU-based joins by up to two orders of magnitude and
can compete with dedicated GPU implementations.
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