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1 Definition

A spatial aggregate join query is a fundamental operation in spatial data analysis used
to combine spatially referenced attribute data (such as demographic statistics and
environmental measurements) with spatial features represented as polygons (such as
administrative boundaries and land parcels). This query applies a spatial predicate,
such as containment or intersection, to associate the attribute data with the relevant
spatial features. It then uses aggregate functions (e.g., sum, average, count) on the
matched data, producing summarized results grouped by individual polygons.

In SQL notation, the query can be expressed as follows:
SELECT R.id, AGG(𝑎𝑖)

FROM P, R

WHERE P.loc INSIDE R.geometry [AND filterCondition]*

GROUP BY R.id

Given a set of attribute data (points) of the form 𝑃(𝑙𝑜𝑐, 𝑎1, 𝑎2, . . . ), where 𝑙𝑜𝑐 and
𝑎𝑖 are the location and attributes of the point, and a set of regions 𝑅(𝑖𝑑, 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦),
the query performs an aggregation (AGG) over the result of the join between 𝑃 and
𝑅. Functions commonly used for AGG include the count of points and average of the
specified attribute 𝑎𝑖 . A region’s geometry can be any arbitrary polygon. The query
can also have zero or more filterConditions on the attributes.

Traditionally, spatial joins are evaluated using a two-step ”filter and refine” ap-
proach. The filter step employs simplified approximations, such as Minimum Bound-
ing Rectangles (MBRs), to quickly eliminate object pairs that do not satisfy the
spatial predicate. In the refinement step, more computationally intensive geomet-
ric tests are applied to the remaining pairs to verify the predicate using the actual
geometries. For the given query, this refinement involves a Point-in-Polygon (PIP)
test, which determines whether each data point lies within a polygonal region. The
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computational cost of this test scales linearly with the number of polygon vertices.
Consequently, it can become a significant bottleneck, as real-world polygons often
contain hundreds of vertices. This challenge is further exacerbated by the sheer
scale of modern datasets, which can include hundreds of millions to several billion
points. As a result, traditional spatial join techniques, commonly used in database
systems, are computationally expensive and are typically only suitable for batch
processing [Tzirita Zacharatou et al.(2021)].

Evaluating spatial joins on GPUs presents unique challenges compared to tra-
ditional CPU-based methods, primarily due to GPUs’ architectural differences and
constraints. GPUs are designed for massively parallel processing, featuring thou-
sands of cores capable of handling numerous operations simultaneously. In contrast,
traditional CPU-based spatial joins often rely on serial or limited parallel processing.
As a result, algorithms and data structures must be adapted to fully leverage GPU
parallelism. Additionally, GPUs have limited on-board memory and require data to
be transferred between the CPU and GPU memory, which can create a bottleneck.
Efficient memory management and data transfer are crucial for efficient GPU-based
spatial joins. Lastly, GPUs from specific vendors, such as NVIDIA, often come with
unique hardware features, such as ray-tracing cores, that can be utilized to accelerate
particular spatial operations. This stands in contrast to the more general approach of
traditional CPU-based algorithms, highlighting the need for novel algorithms that
can take advantage of specialized hardware features.

Existing methods for performing spatial joins on GPUs can be generally classified
into three categories: (1) General-purpose GPU programming (GPGPU) methods,
which rely on programming APIs like CUDA and OpenCL; (2) Rasterization-based
methods, which leverage the GPU’s rendering pipeline, particularly the rasterization
operation, to convert geometric primitives into pixel-based representations for effi-
cient spatial joins; and (3) Ray-tracing (RT) core methods, which utilize dedicated
ray-tracing hardware in modern GPUs to calculate intersections and proximity rela-
tionships among spatial objects efficiently. This chapter focuses on using rasterization
to perform spatial joins and subsequent aggregations on the GPU.

2 Historical Background

The first GPU, the GeForce 256, was introduced in 1999. Initially designed as
a specialized processor for accelerating graphics rendering in 3D games, GPUs
soon attracted interest for general-purpose computation. Early efforts leveraged
OpenGL-based[Shreiner et al.(2013)] graphics APIs to perform spatial selection and
joins [Sun et al.(2003)]. Specifically, Sun et al. explored GPU acceleration for the
refinement step of spatial queries by rendering spatial geometries and analyzing pixel
data to detect intersections or measure distances. For spatial intersection joins, they
utilized rasterization in the join refinement phase to determine whether two polygons
do not intersected. However, their approach relied on pairwise comparisons, which
did not scale well with an increasing number of polygons, yielding only modest
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performance improvements over traditional CPU-based methods. Moreover, early
GPUs had limited programmability and computational power, which constrained
their effectiveness for general-purpose spatial processing.

The emergence of General-Purpose GPU (GPGPU) technologies in 2007
marked a significant shift, enabling more flexible use of GPUs for non-graphics
computations. This development sparked interest in employing GPUs for rela-
tional data management, which eventually extended to spatial data. Early ef-
forts focused on accelerating large-scale Point-in-Polygon (PIP) tests for spatial
joins [Zhang and You(2012)], soon followed by more advanced join methods that in-
troduced improved filtering and load-balanced refinement on the GPU [Aghajarian et al.(2016),
Aghajarian and Prasad(2017)]. Building on these techniques, subsequent research
accelerated geometric intersection on GPUs using a collection of filters applied hier-
archically [Liu et al.(2019), Liu and Puri(2020)]. Finally, HEAVY.AI [HEAVY.AI([n. d.])]
(formerly OmniSci), a geospatial analytics platform, accelerates spatial queries by
compiling them to native GPU code and leveraging GPU parallelism.

In 2017, researchers revisited GPU-based rendering for spatial query pro-
cessing, leveraging the significant advancements in GPU technology since the
early work of Sun et al. [Sun et al.(2003)]. Specifically, the Raster Join ap-
proach [Tzirita Zacharatou et al.(2017)] reformulates aggregate spatial join queries
as a sequence of drawing operations on a canvas. This transformation enables spatial
joins to be performed as intersections of rendered objects, effectively utilizing the
GPU’s graphics pipeline to achieve interactive speeds. Generalizing on the above
approach, Spade [Doraiswamy and Freire(2022)] is a spatial database engine that
leverages the GPU’s graphics pipeline to implement spatial operators. It adopts the
canvas data model, where spatial objects are represented as images, with each pixel
storing metadata about the objects’ geometry. To efficiently support a diverse range of
query types, Spade integrates a GPU-friendly spatial algebra derived from computer
graphics operations, taking advantage of the inherent optimization of the GPU for
such operations. By executing spatial operators within the graphics pipeline, Spade
fully exploits the computational power of modern GPUs.

Recently, the focus has shifted to leveraging dedicated ray-tracing (RT) cores in
modern GPUs for spatial data processing. Ray tracing, traditionally used in gam-
ing and rendering, simulates light interactions with geometric primitives to produce
highly realistic images. It operates by tracing rays from a camera through pixels in an
image plane and computing ray-primitive intersections, a computationally expensive
process. To accelerate intersection detection, Bounding Volume Hierarchies (BVHs)
are used to hierarchically partition the scene, significantly reducing the number
of intersection tests by filtering out unnecessary primitives. The RayJoin frame-
work [Geng et al.(2024)] transforms spatial join queries into ray-tracing problems,
utilizing the hardware-accelerated BVH traversal of RT cores to efficiently identify
intersecting objects within a scene, thereby significantly outperforming traditional
CPU-based spatial join methods.
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3 Scientific Fundamentals

This section begins by introducing the graphics pipeline, the foundation of rasterization-
based approaches. It then presents Raster Join [Tzirita Zacharatou et al.(2017)], a
state-of-the-art method that leverages GPU rasterization to perform spatial aggre-
gate join queries over polygons efficiently.

3.1 Graphics Pipeline

The graphics pipeline is designed to maximize GPU performance for applications
such as real-time rendering in video games. This is achieved by decomposing the
complex rendering process, which transforms a 3D scene into a 2D image from the
camera’s perspective, into a structured sequence of specialized stages. Each stage
is executed as a collection of parallel threads, allowing an efficient distribution of
workload across the GPU’s computational cores. This structured decomposition en-
ables the graphics driver to dynamically schedule threads across different pipeline
stages, optimizing resource utilization and minimizing execution bottlenecks. Fur-
thermore, since the graphics pipeline is intrinsically aligned with the GPU hardware
architecture, applications that leverage it inherently benefit from hardware-aware
execution, ensuring efficient performance without requiring extensive manual opti-
mization. The remainder of this section provides a brief overview of the graphics
pipeline stages.

Vertex Shader. The graphics pipeline begins with the vertex shading stage,
where all vertex coordinates are transformed into a unified world coordinate system
before being projected onto the screen. This stage also manages additional per-vertex
computations, such as lighting and texture coordinate setup. The vertex shader,
executed in a Single Program Multiple Data (SPMD) fashion, allows developers to
customize transformations and other per-vertex operations.

Clipping and Rasterization. After vertex processing, primitives are passed to
the clipping and rasterization stage, which is typically managed by the GPU driver.
Clipping removes primitives outside the visible viewport, while those partially inter-
secting the viewport are cropped, generating new primitives that are fully contained
within the screen space. Rasterization then converts each primitive into a set of frag-
ments, where each fragment corresponds to a potential pixel in the final image. The
number of generated fragments is resolution-dependent—higher resolutions (e.g.,
1920 × 1080) produce a greater number of smaller fragments compared to lower
resolutions (e.g., 800 × 600).

Fragment Shader. Once rasterization is complete, the fragment shader processes
each fragment. This stage applies interpolated attributes, such as color, depth, and
texture effects, determining the final visual output of each pixel. The fragment
shader is also programmable, allowing developers to implement advanced shading
techniques. Similar to vertex shaders, fragment shaders operate in an SPMD model,
leveraging the GPU’s massively parallel architecture for efficient execution.
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Post-Fragment Processing. Following fragment shading, the final stage of the
pipeline processes the output fragments to generate the actual pixels displayed on
the screen. Multiple fragments may contribute to a single pixel; these fragments
undergo blending, a process that combines color information based on predefined
blending functions. Additional operations, such as depth testing, stencil testing, and
alpha compositing, refine the final rendered image before it is written to the frame
buffer.

Frame Buffer Object (FBO). Beyond direct rendering to a physical display,
OpenGL supports rendering to off-screen buffers, known as Frame Buffer Objects
(FBOs). An FBO functions as a virtual rendering target, allowing developers to
define arbitrary resolutions independent of the display’s native resolution. Each
pixel in an FBO typically stores four 32-bit values representing the red, green, blue,
and alpha (RGBA) color channels, but the frame buffer can also be configured to store
additional attributes, such as depth values or auxiliary render targets for advanced
rendering techniques.

Overall, the graphics pipeline is designed to maximize performance through
parallel processing and specialized hardware optimizations. OpenGL provides a
high-level abstraction for interacting with the GPU, while graphics drivers handle
low-level tasks, including thread scheduling, parallel rasterization, and memory
management. Since these drivers are hardware-specific, applications utilizing the
graphics pipeline inherently benefit from hardware-level optimizations, ensuring
efficient execution across different GPU architectures.

3.2 Raster Join

Raster Join is a spatial data processing technique designed to efficiently compute
spatial aggregate join queries involving point and polygon datasets. Unlike traditional
spatial join approaches that rely on Point-in-Polygon (PIP) tests, Raster Join leverages
rasterization to map geometric entities onto a discrete pixel-based representation.
This technique significantly reduces computational complexity by performing spatial
joins in image space, enabling high-performance execution on modern GPUs.

The design of Raster Join builds on two key observations:

• A spatial join between points and polygons can be approximated by their inter-
sections when rendered onto a common rasterized canvas.

• Aggregation can be integrated within the join operation, eliminating the need to
materialize intermediate results.

Framing spatial aggregate join queries as rendering tasks allows for the effec-
tive use of GPU optimizations, particularly for rasterization. GPU rasterization is
a hardware-accelerated process that efficiently converts polygons into pixel-based
representations. Since rasterization is built into the GPU driver and optimized for the
underlying hardware, it maximizes GPU utilization and ensures high-performance
execution.
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Integrating aggregation directly within the join operation provides two major
benefits: (1) it eliminates the need to store intermediate join results, allowing the
GPU to process larger datasets with fewer passes; and (2) it avoids materialization
and minimizes data transfer overhead, significantly improving execution speed.

3.2.1 Core Approach

The design of Raster Join builds on the aforementioned key observations. Intuitively,
it first draws the points on a canvas and keeps track of the intersections by maintaining
partial aggregates in the canvas cells. It then draws the polygons on the same
canvas, and computes the aggregate result from the partial aggregates of the cells
that intersect with each polygon. The above operations are accomplished in two steps
as described next.

(a) (b)

Fig. 1 Raster Join first renders all points onto an FBO storing the count of points in each pixel (a).
It then aggregates the values of pixels corresponding to polygon fragments (b).

Step 1. Render Points: The input point set is transformed into screen space
and rendered onto an FBO. In this FBO, Raster Join encodes the partial aggregate
(e.g., count, sum) of all points falling within each pixel using the color channel of
the pixel. For example, when computing a count aggregate, the red channel of the
corresponding pixel is incremented by 1 for each point mapped to it. This results
in an FBO where each pixel stores the aggregated value of the points it contains.
Figure 1(a) illustrates this process for an example dataset using the count aggregate.

Step 2. Render Polygons: In this step (Figure 1(b)), the query result is incre-
mentally updated. To do so, Raster Join maintains a result array 𝐴, where each entry
corresponds to a polygon, initially set to zero. Similarly to the previous step, the
polygon’s vertices are first transformed into screen space. The transformed polygons
are then converted into discrete fragments by the rasterization process. Each polygon
fragment is processed as follows: the partial aggregate of points in the corresponding
pixel is retrieved from the FBO from the previous step. This value is then used to
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update the polygon’s aggregate in the corresponding entry in the result array 𝐴. After
all polygons have been processed, the array 𝐴 contains the final result of the query.

3.2.2 Bounding Errors

Since Raster Join relies on rasterization, it introduces small errors due to the dis-
crete nature of pixels. These errors arise from how pixels intersect with polygon
boundaries:

False Positives: False positives occur when a pixel is classified as belonging to
a polygon despite not being fully enclosed by its boundaries. This happens because
rasterization assigns entire pixels to a polygon if their centers or a sufficient portion of
their area falls within the polygon. Consequently, points contained in these pixels are
aggregated into the polygon, even if they are technically outside the precise polygon
boundary. In the example of Figure 1(b), the false positive counts are highlighted in
white.

False Negatives: False negatives occur when a point should be included in a
polygon’s aggregation but is excluded due to pixel discretization. This happens when
a pixel is not assigned to a polygon because its center does not fall within the
polygon’s boundaries, even though portions of the pixel intersect the polygon. As a
result, points contained in such pixels can be incorrectly omitted from the polygon’s
aggregate.

To control errors, the resolution of the rasterized canvas is dynamically adjusted.
Increasing the resolution decreases pixel size, enhancing accuracy. When the re-
quired resolution exceeds GPU capabilities, the image space is divided into smaller
canvases, each processed sequentially. Formally, accuracy is regulated by imposing
an error bound on the Hausdorff distance between the original polygons and their
pixel-based approximations. This approach aligns well with real-world data, which
often contains inherent uncertainties. For instance, neighborhood boundaries typi-
cally follow street segments, where the entire street surface—not just a thin line—is
considered to be the boundary. In such cases, the street width can serve as a meaning-
ful error bound. Additionally, in visualization applications, minor approximations
often remain imperceptible, making small errors in spatial aggregation negligible
for practical purposes.

3.2.3 Achieving Accurate Results

To obtain exact results, Raster Join can be enhanced with selective Point-in-Polygon
(PIP) tests. Instead of performing PIP tests for all points, Raster Join only applies PIP
tests to correct errors along polygon boundaries. The process involves three steps:

Step 1. Render Polygon Outlines: The first step identifies pixels that contain
polygon boundaries. To achieve this, the polygon outlines are rasterized onto a
separate FBO, creating a boundary mask. This mask highlights pixels where approx-
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imation errors are likely to occur, ensuring that subsequent computations focus only
on relevant areas.

Step 2. Render Points and Apply PIP Tests: The second step processes the
input points. Each point is transformed into screen space and checked against the
boundary mask. If a point falls within a boundary pixel, it undergoes an explicit
Point-in-Polygon (PIP) test to determine its exact inclusion status. This selective
testing prevents unnecessary computations while ensuring accuracy.

Step 3. Render Polygons: The final step simply renders all polygons, similar
to the core Raster Join approach. However, when processing each fragment, the
algorithm first checks if it falls on a boundary pixel. If it does, then it is discarded,
since all points falling into that pixel have already been processed in the previous step.
Otherwise, all points falling into the pixel are inside the polygon and are included in
the final aggregate result.

This method balances performance and accuracy by leveraging rasterization for
most computations while applying computationally expensive PIP tests only where
necessary.

3.2.4 Extensions and Implementation

Raster join can be extended to support more complex spatial aggregate join queries
and large datasets. It can also provide result ranges for each polygon, rather than just
a single aggregate result.

Aggregations: In addition to simple counts, Raster Join can store auxiliary at-
tributes in the FBO’s color channels. This enables more complex aggregations, such
as (weighted) sums and averages, allowing for richer analytical capabilities without
significant additional computational overhead.

Filtering: When spatial aggregate join queries include constraints, such as fil-
tering points based on specific attributes, these can be efficiently processed on the
GPU. The vertex shader evaluates each data point against the query constraints be-
fore transforming it into screen space. Points that do not meet the constraints are
assigned positions outside of the screen space, thereby ensuring they are clipped and
excluded from further processing in the fragment shader. Currently, the supported
constraints include the operators greater than (>), less than (<), and equal to (=).

Estimating Result Ranges: To improve the accuracy assessment, Raster Join can
estimate result ranges by leveraging boundary pixels. Specifically, for each polygon,
the algorithm can compute an upper and lower bound on the aggregate by consider-
ing the maximum and minimum possible contributions from these boundary pixels.
By assuming a uniform spatial distribution of points within the boundary pixels, we
can derive a confidence interval for the aggregation result. This approach is partic-
ularly useful in scenarios where precision needs to be balanced with computational
efficiency.

Out-of-Core Execution: When processing point datasets that exceed GPU mem-
ory capacity, Raster Join can operate in an out-of-core manner by partitioning the data
into smaller batches that fit into the GPU memory and processing them sequentially.
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Implementation: Raster Join is implemented in OpenGL [Shreiner et al.(2013)]
by customizing specific stages of the graphics pipeline using GLSL shaders.

4 Key Applications

Spatial aggregate join queries play a crucial role in various scientific and analytical
domains by enabling efficient spatial data integration and summarization:

• Geographic Information Systems (GIS) Applications: GIS applications man-
age spatial datasets organized into distinct map layers, such as buildings, road
networks, and administrative boundaries. Analyzing relationships between these
layers often requires spatial aggregate join queries to associate point-based at-
tribute data with polygonal regions. For example, to analyze business distribution,
individual store locations (points) can be aggregated within commercial zones
(polygons) to assess regional economic activity. Similarly, to assess traffic impact,
vehicle GPS trajectories (points) can be joined with zoning areas (polygons) to
compute congestion metrics. Since spatial joins are computationally intensive,
optimizing their execution is critical for ensuring the efficiency of GIS applica-
tions.

• Visualization and Interactive Analytics: Spatial aggregate join queries are es-
sential for real-time visualization tools that enable users to explore large-scale
geospatial data interactively [Doraiswamy et al.(2018)]. By aggregating high-
density point data, such as rideshare pickups, air quality sensor readings, or
mobile phone activity, into geographic regions, these queries allow visualization
platforms to generate heatmaps, choropleth maps, parallel coordinate charts, and
other dynamic visual representations. Optimizing spatial joins in these applica-
tions is critical for maintaining interactivity and responsiveness when visualizing
large datasets.

• Urban Planning: By integrating demographic, socioeconomic, and infrastructure
datasets with administrative boundaries, spatial aggregate joins aid in zoning
analysis, resource allocation, and optimization of transportation networks. Urban
planners often adjust zoning boundaries and policies, requiring real-time feedback
on how these changes affect essential urban metrics. Spatial aggregate joins allow
for the dynamic computation of summary statistics (e.g., population density, land
use distribution) within the updated zones, enabling data-driven decision-making.
Additionally, urban planners can incorporate new infrastructure elements, such as
bus stops or police stations, and determine their spatial coverage using restricted
Voronoi diagrams. They can then aggregate urban data in the affected regions.
Overall, the efficient execution of spatial aggregate join queries is crucial to
maintaining interactivity in urban planning tools.

• Environmental Modeling: Spatial aggregate join queries facilitate large-scale
ecological assessments by aggregating environmental sensor data within geo-
graphic regions. This supports various applications, including climate change
studies, pollution tracking, and habitat conservation planning.
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5 Future Directions

Future research can drive further advancements at the intersection of computer
graphics, spatial databases, and high-performance computing. As spatial and spatio-
temporal datasets continue to expand in volume and complexity, leveraging modern
GPU architectures will be critical for developing scalable, high-performance solu-
tions. One of the primary performance bottlenecks in GPU-accelerated spatial joins
is data transfer between CPU and GPU memory. This overhead is primarily due to the
latency and bandwidth limitations of the PCI Express (PCIe) bus, particularly when
performing frequent, small data transfers. Optimizing memory management strate-
gies could significantly enhance performance. Another important research direction
is the development of cost models that accurately predict the execution costs of
different GPU-based spatial join strategies by considering data, workload, and hard-
ware characteristics. Integrating these models into query optimizers would enable
spatial databases to dynamically choose the most efficient execution strategy for a
given spatial join, leading to improved query planning and overall performance. Cur-
rently, most GPU-accelerated spatial join algorithms focus on two-dimensional (2D)
datasets. However, an increasing number of applications require 3D spatial joins
(e.g., urban modeling, neuroscience [Tzirita Zacharatou et al.(2015)]) and spatio-
temporal joins (e.g., tracking moving objects). Future research could explore how
ray casting, ray tracing, and collision detection techniques—commonly used in com-
puter graphics—can be adapted to efficiently process 3D spatial relationships and
temporal dependencies in large-scale datasets. To further enhance the impact of
GPU-accelerated spatial (aggregate) joins, future work could focus on seamlessly
integrating these techniques with spatial databases and interactive visualization tools.
This integration would empower users with real-time geospatial analytics capabili-
ties, allowing them to interactively explore large spatial datasets and visualize query
results with minimal delay. Such work would promote the broader adoption of spatial
(aggregate) joins in various real-world applications, including urban planning and
environmental modeling.

6 Cross References

• Graphics (Processing Units) for Spatial Processing
• GPU-based Filter and Refine Algorithms for Polygon Intersection
• Cuda/GPU
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