
AUTOMATING EARTH OBSERVATION ANALYTICS PIPELINES WITH AGENT RAVEN

Gereon Dusella*, Haralampos Gavriilidis*, Binger Chen*,
Begüm Demir*, Volker Markl*,‡, Eleni Tzirita Zacharatou§

*BIFOLD & Technische Universität Berlin, ‡DFKI, §HPI & Universität Potsdam

ABSTRACT

Efficient integration of vector databases, such as those con-
taining administrative boundaries and land parcels, with re-
mote sensing images is essential for various Earth Observa-
tion (EO) applications. Zonal statistics (ZS) offer a powerful
tool for this purpose, but their computation remains chal-
lenging due to fragmented system interfaces, diverse prepro-
cessing needs, and inconsistent performance across systems.
Current methods optimize execution within single systems
but lack support for dynamic, cross-system workflows. To
address this, we present Agent Raven, the first AI-driven
multi-agent system designed to autonomously manage the
full lifecycle of ZS computation and deployment. Building
on the Raven framework, Agent Raven dynamically selects
execution backends, optimizes query pipelines, and adap-
tively manages workflows based on previous experiments.
Our work represents a step forward in intelligent orchestra-
tion across heterogeneous systems in EO data analytics.

1. INTRODUCTION

The availability of remote sensing imagery has significantly
increased [1, 2, 3] due to advancements in satellite technol-
ogy. Programs like Copernicus [13] provide vast amounts
of freely available raster data, while the volume of vector
datasets (e.g., OpenStreetMap, governmental geospatial data)
is also expanding. To effectively utilize these data for Earth
Observation applications (e.g., climate monitoring, wildfire
prediction, urban planning) [18, 17, 14, 16], efficient process-
ing techniques are essential. A key step in these applications
is the computation of Zonal Statistics (ZS), where pixel-based
raster data are aggregated within defined vector-based geome-
tries, such as city boundaries or farmland parcels. For exam-
ple, to identify deforested areas, one can apply ZS on satellite
images and polygons that define forest boundaries [15].

Computing ZS requires combining raster (gridded cells)
and vector (geometric features) data. Geospatial systems such
as PostGIS1 and Beast [5] handle these data types, but their
APIs and performance vary widely. This variability forces
data scientists to navigate multiple systems, adding complex-
ity and inefficiency. The architecture of each system also

1https://postgis.net/

Development Stage Full-Scale Experiment

Beast
(Data Flow Engine)

PostGIS
(DBMS)

Beast
(Data Flow Engine)

PostGIS
(DBMS)

0

100

200

300

System under Test

Re
sp

on
se

 T
im

e 
(s

ec
)

Prep
Q1

Q2
Q3

Q4
Q5

Q6
Q7

Q8
Q9

Q10

Fig. 1: Performance in different development phases

impacts its suitability for different stages of a data science
project. For example, PostGIS is well-suited for development
involving multiple queries on smaller datasets, while Beast
is better for large-scale experiments with single-shot queries.
Figure 1 illustrates this distinction.

While optimizing individual queries is well-studied in
data systems engineering, optimizing the iterative process of
refining an analytics pipeline is significantly more challeng-
ing. This challenge is even greater for ZS queries, as not all
geospatial systems support raster-vector joins equally, forcing
users to adjust queries for each system’s unique API. In addi-
tion, pre-processing steps, such as rasterization, vectorization,
format conversion, and coordinate reference system (CRS)
alignment, are often necessary, depending on the data model
of each system. As queries evolve, the optimal combination
of parameters can change significantly. These challenges
make it difficult for users to efficiently manage evolving ZS
workflows across heterogeneous geospatial systems.

Given these challenges, emerging AI agent technologies
offer promising solutions for automating complex geospatial
workflows. AI agents are bridging the gap between computer
scientists and other users, enabling almost anyone to accom-

https://postgis.net/


plish tasks that once required years of expertise. They are now
used across various fields for tasks like visual reasoning [9],
code generation [11], scientific experimentation [8], and
model interpretation [10]. In geospatial applications, there
has been a shift from manually created processing scripts to
intelligent agents that autonomously manage remote sensing
data, select tools, and refine outputs for tasks like land cover
mapping, change detection, or geospatial question answer-
ing [7, 12, 6]. These advancements lay the groundwork for
dynamic, multi-system geospatial workflows.

We propose Agent Raven, our vision for an AI-powered
assistant that supports data scientists at all stages of ZS ex-
perimentation - from initial development to continuous de-
ployment. Agent Raven interfaces with the Raven core com-
ponent [4], our framework for executing ZS queries seam-
lessly across multiple geospatial systems. By selecting the
optimal backend and applying query optimizations based on
a database of past experiments, Agent Raven learns and en-
hances performance over time. To the best of our knowledge,
Agent Raven is the first system to offer deep, end-to-end in-
tegration of geospatial data science tasks, aiming to signifi-
cantly reduce development time and operational complexity.

Our contributions are twofold. First, in Section 2, we
describe how Raven integrates heterogeneous geospatial
systems, providing uniform access and enabling seamless
switching between them. This integration simplifies interop-
erability and lessens the workload for data scientists. Second,
in Section 3, we propose Agent Raven, our vision for an
AI-driven assistant that supports data scientists across the
full lifecycle of ZS experimentation. By leveraging past ex-
periment data, Agent Raven accelerates the transition from
early-stage development to robust production pipelines.

2. PLAIN RAVEN FRAMEWORK

Today’s data scientists face multiple challenges when imple-
menting zonal statistics, due to the varying interfaces and
configuration parameters exposed by existing geospatial sys-
tems, the varying pre-processing steps that these systems
require, and their divergent runtime performance capabil-
ities. In response to these challenges, Raven aims to: 1)
offer an easy-to-use zonal statistics interface; and 2) highlight
performance differences in geospatial systems. To achieve
this, Raven exposes a declarative zonal statistics interface
based on a DSL that we developed. Using this DSL, Raven
can transparently optimize and execute a given zonal statis-
tics task on multiple geospatial systems. As a result, Raven
provides system independence, thereby helping users avoid
vendor lock-ins. Furthermore, by automating execution and
providing detailed performance results, Raven simplifies se-
lecting the most efficient system for a given workload. In the
following, we give a brief overview of Raven’s components.

2.1. Architecture Overview

Figure 2 presents Raven’s architecture. Raven accepts a
ZS task expressed in its DSL (the query) and relies on its
Pipeline Planner for optimization. Combined with a
Capabilities file specifying any system limitations, the
planner identifies any necessary pre-processing steps, such as
format or CRS conversions, and builds a Pipeline represen-
tation that it passes to the Execution Interface. This
system-developer-provided interface includes a IR (Internal
Representation) Converter and a GSS (Geospatial System)
Connector. The IR Converter translates Raven’s abstract
syntax tree (AST) into system-specific code using parame-
terized templates, and the GSS-Connector enables execution
on the underlying systems and result retrieval. Additionally,
Raven stores execution metrics, e.g., runtime and resource
consumption for each step, in its experiment database, which
is accessible to other systems. The current systems supported
by Raven are PostGIS, Beast, Apache Sedona2, HeavyDB3,
and RasDaMan4.

2.2. Zonal Statistics Parameters

To simplify Zonal Statistics (ZS) queries across different
geospatial systems, Raven provides a domain-specific lan-
guage (DSL) that abstracts system-specific syntax and allows
users to define and tune ZS queries in a structured way.
We have identified four key operator classes that a tunable
ZS query consists of: Dataset operators specify the raster
and vector datasets used for analysis. Aggregation opera-
tors define how pixel values within vector-defined zones are
processed, including grouping, filtering, and computing sum-
mary statistics. System operators determine which geospatial
system executes the query. Execution Parameter operators
allow fine-tuning of execution, such as raster tile size adjust-
ment, vector simplification, and CRS alignment.

2.3. Zonal Statistics Pipelines and Optimizations

The AST generated by Raven’s Pipeline Planner (cf.
Figure 2) encapsulates the end-to-end processing of a ZS
task. This includes pre-processing operations, such as chang-
ing format to support loading into the given system, aligning
CRSs, filtering the datasets, as well as the join and aggrega-
tion operations. Raven then allows a data scientist or AI agent
to configure each of these parameters individually, enabling
fine-grained control over the pipeline execution.

We can categorize these parameters into three groups that
a user or an AI agent can modify. First, they can reduce
the number of processed pixels and vector features as early
as possible. Second, they can tune the partitioning of raster
and vector data to improve query execution. Third, they can

2https://sedona.apache.org/
3https://heavy.ai
4https://rasdaman.org/

https://sedona.apache.org/
https://heavy.ai
https://rasdaman.org/


Data Scientist

Preprocessor

Instructions

SDMSSpatial System

Datasets

Results, 
Statistics

ZS Exp
DB

Metrics

Capabilities

Results Table

Pipeline
PlannerQuery

Pipeline 
Repr

SpS-Connector

Execution Interface

IR Converter

Metrics

SpS-Query

Zonal Statistics
Agent

Discovery
Agent

Deployment
Agent

Further
Agents Datasets

Fig. 2: Agent Raven Architecture

minimize computational overhead by avoiding expensive op-
erations when possible. These tuning techniques leverage
the available ZS parameter operators and incorporate meth-
ods from existing research. Together, they can speed up ZS
queries significantly [4].

2.4. Benchmarking Mode

The performance of ZS tasks in different geospatial systems
can vary significantly depending on the data and workload. To
facilitate benchmarking, Raven features a dedicated bench-
marking mode. This mode allows users to execute multiple
pipelines and produce detailed performance plots, e.g., break-
down performance of different pipeline stages, facilitating
easy comparison of different systems and parameter combi-
nations. As a result, users can gain insights into potential
bottlenecks and enhance system performance by fine-tuning
available parameters. Overall, Raven’s integrated bench-
marking component provides valuable tools for optimizing
zonal statistics tasks across diverse geospatial systems.

3. AGENT RAVEN: AUTONOMOUS ZONAL
STATISTICS BEYOND RAVEN

Calculating the results of a ZS task is only one part of broader
multi-stage geospatial data science pipelines. To cover other
parts of the pipelines, we propose Agent Raven, a multi-agent
extension of the plain Raven framework. Agent Raven al-
lows users to describe analytical goals in natural language,
while internal agents automatically discover datasets, con-
struct pipelines, invoke tools like plain Raven, and manage
execution from development to deployment. It can also re-
trieve external resources, such as data catalogs or tool manu-
als, to assist its reasoning during task planning and execution.

3.1. Background on AI Agents for Geospatial Workflows

An AI agent is a system that perceives its environment, rea-
sons about goals, and acts autonomously to fulfill user re-
quests. These agents typically leverage large language models
and tools to interpret user intent, plan tasks, access external
systems, and manage workflows adaptively. While traditional

single-agent systems struggle with scalability, specialization,
and responsiveness when workflows become complex, multi-
agent systems organize multiple specialized agents under an
orchestrator that coordinates their collaboration [6]. Each
agent focuses on a smaller set of capabilities, such as dataset
discovery, ZS, or deployment, while the orchestrator handles
planning, task assignment, and execution monitoring. Multi-
agent frameworks can more easily scale across domains, in-
tegrate heterogeneous tools, recover from errors, and provide
faster intermediate feedback.

Agent Raven uses a multi-agent framework consisting of
three agents: the Discovery Agent, which identifies and
retrieves relevant input datasets; the Zonal Statistics
Agent, which constructs structured pipelines and selects ap-
propriate geospatial systems by invoking the core Raven sys-
tem as a tool; and the Deployment Agent, which man-
ages downstream tasks such as continuous monitoring and
scheduled deployment. A centralized memory allows the sys-
tem to improve decision-making across tasks. This shared
memory will replace the experiment database used in the plain
version of Raven.

3.2. Workflow Example of Agent Raven

We envision Agent Raven as a deeply integrated multi-agent
system, where specialized AI agents collaborate to automate
the end-to-end ZS workflow. Instead of requiring users to
manually script queries, Agent Raven allows users to sim-
ply express their goals in natural language. The agents then
automatically handle dataset retrieval, pipeline construction,
execution, and continuous pipeline deployment.

Consider a data scientist interested in monitoring a spe-
cific geospatial area over an extended period, such as tracking
the percentage of trees in a given region to observe deforesta-
tion. They would interact with Agent Raven by specifying the
task and suggesting relevant criteria for suitable datasets. In
response, the orchestrator in Agent Raven schedules dataset
retrieval to its Dataset Discovery Agent, which searches for
and returns a selection of candidate datasets, complete with
metadata. To minimize perceived latency and improve user
experience, Agent Raven proactively initiates multiple par-
allel actions. While the Dataset Discovery Agent retrieves



datasets, the ZS Agent begins preparing preliminary pipeline
templates based on the user’s task description. When candi-
date datasets are identified, the ZS Agent automatically gen-
erates the pipeline representation and invokes the underlying
plain Raven engine as a tool to execute the ZS operations.
This process includes selecting an efficient geospatial system
capable of handling the candidate datasets. To provide early
feedback and save resources, Agent Raven initially executes
the pipeline on a small geospatial subset, quickly producing
preliminary results. In cases where datasets are particularly
large, Agent Raven may suggest applying approximate query
processing to reduce the dataset size and speed up the query,
while trading accuracy. Additionally, Agent Raven leverages
its shared memory, which records all past task steps, param-
eters, and outcomes, to predict optimal configurations based
on prior experience, further reducing the need for user inter-
vention. If a dataset appears highly promising, Agent Raven
can even pre-run partial queries while awaiting final user con-
firmation, further improving the perceived latency.

Once the user is satisfied with the preliminary results,
Agent Raven will switch over to full-scale experiment mode.
It again analyzes all parameters, considering available re-
sources and time, selecting the best system and execution
strategy. The final results will be passed to the continuous
Deployment Agent, which manages ongoing deployments
and regularly updates Agent Raven on its operations. This
allows Agent Raven to adapt any parameters if necessary.

4. OUTLOOK

This paper presents Agent Raven, an AI-powered multi-agent
system that automates ZS-based EO analytics pipelines across
diverse geospatial systems. By adaptively selecting execution
systems, optimizing queries, and managing workflows based
on historical performance, Agent Raven enhances both the
efficiency and accessibility of EO applications.

Looking ahead, we plan to extend Agent Raven with real-
time data streaming support and integrate additional geospa-
tial backends. Moreover, we plan to incorporate fault-tolerant
execution strategies within the multi-agent framework to en-
sure robust execution in dynamic environments.

REFERENCES

[1] European Space Agency. Copernicus data space ecosystem,
2024. URL https://dataspace.copernicus.eu/.

[2] Ahmet Kerem Aksoy, Pavel Dushev, Eleni Tzirita Zacharatou,
Holmer Hemsen, Marcela Charfuelan, Jorge-Arnulfo Quiané-
Ruiz, Begüm Demir, and Volker Markl. Satellite image search
in AgoraEO. PVLDB, 15(12):3646–3649, 2022.

[3] Arne de Wall, Björn Deiseroth, Eleni Tzirita Zacharatou,
Jorge-Arnulfo Quiané-Ruiz, Begüm Demir, and Volker Markl.
Agora-EO: A Unified Ecosystem for Earth Observation – A

Vision for Boosting EO Data Literacy –. In Proc. Big Data
from Space (BiDS), 2021.

[4] Gereon Dusella, Haralampos Gavriilidis, Laert Nuhu, Volker
Markl, and Eleni Tzirita Zacharatou. Multi-Backend Zonal
Statistics Execution with Raven. In SIGMOD/PODS, pages
532–535. ACM, 2024. doi: 10.1145/3626246.3654730.

[5] Ahmed Eldawy et al. Beast: Scalable Exploratory Analytics
on Spatio-temporal Data. In CIKM, pages 3796–3807. ACM,
2021.

[6] Chaehong Lee et al. Multi-agent geospatial copilots for remote
sensing workflows. ArXiv, abs/2501.16254, 2025.

[7] Chenyang Liu et al. Change-agent: Towards interactive com-
prehensive remote sensing change interpretation and analysis.
CoRR, abs/2403.19646, 2024.

[8] Chris Lu et al. The AI scientist: Towards fully automated open-
ended scientific discovery. CoRR, abs/2408.06292, 2024.

[9] Dı́dac Surı́s et al. Vipergpt: Visual inference via python ex-
ecution for reasoning. In ICCV, pages 11854–11864. IEEE,
2023.

[10] Tamar Rott Shaham et al. A multimodal automated inter-
pretability agent. In ICML. OpenReview.net, 2024.

[11] Tanmay Gupta et al. Codenav: Beyond tool-use to using real-
world codebases with LLM agents. CoRR, abs/2406.12276,
2024.

[12] Wenjia Xu et al. Rs-agent: Automating remote sensing tasks
through intelligent agents. ArXiv, abs/2406.07089, 2024.

[13] European Commission. Copernicus programme.
https://www.copernicus.eu/en, 2025.

[14] Stefanie Holzwarth and et al. Earth Observation Based Moni-
toring of Forests in Germany: A Review. Remote Sensing, 12
(21):3570, January 2020. doi: 10.3390/rs12213570.

[15] Parag Kadam, Nicholas Magnan, and Puneet Dwivedi. A
spatial dependence approach to assessing the impacts of Sus-
tainable Forestry Initiative’s Fiber Sourcing certification on
forestry Best Management Practices in Georgia, United States.
Forest Policy and Economics, 157:103071, 2023. doi: 10.

1016/j.forpol.2023.103071.

[16] Paul J. Pinter, Jr., Jerry L. Hatfield, James S. Schepers, Ed-
ward M. Barnes, M. Susan Moran, Craig S.T. Daughtry, and
Dan R. Upchurch. Remote Sensing for Crop Management.
Photogrammetric Engineering & Remote Sensing, 69(6):647–
664, 2003. doi: 10.14358/PERS.69.6.647.

[17] Jerry C. Ritchie, Paul V. Zimba, and James H. Everitt. Remote
Sensing Techniques to Assess Water Quality. Photogrammet-
ric Engineering & Remote Sensing, 69(6):695–704, June 2003.
doi: 10.14358/PERS.69.6.695.

[18] Kali E Sawaya, Leif G Olmanson, Nathan J Heinert, Patrick L
Brezonik, and Marvin E Bauer. Extending satellite remote
sensing to local scales: Land and water resource monitoring us-
ing high-resolution imagery. Remote Sensing of Environment,
88(1):144–156, 2003. doi: 10.1016/j.rse.2003.04.006.

https://dataspace.copernicus.eu/
http://dx.doi.org/10.1145/3626246.3654730
http://dx.doi.org/10.3390/rs12213570
http://dx.doi.org/10.1016/j.forpol.2023.103071
http://dx.doi.org/10.1016/j.forpol.2023.103071
http://dx.doi.org/10.14358/PERS.69.6.647
http://dx.doi.org/10.14358/PERS.69.6.695
http://dx.doi.org/10.1016/j.rse.2003.04.006

	 Introduction
	 Plain Raven Framework
	 Architecture Overview
	 Zonal Statistics Parameters
	 Zonal Statistics Pipelines and Optimizations
	 Benchmarking Mode

	 Agent Raven: Autonomous Zonal Statistics beyond Raven
	 Background on AI Agents for Geospatial Workflows
	 Workflow Example of Agent Raven

	 Outlook

